TRI Call No. 72635

Copy No. / of 3

ESD-TR-70-286

DEPARTMENT OF DEFENSE

ELECTROMAGNETIC COMPATIBILITY ANALYSIS CENTER

AVIONICS INTERFERENCE PREDICTION MODEL (U)

Prepared by G. Morgan of the IIT Research Institute

December 1970

ESD RECORD COPY

RETURN TO SCIENTIFIC & TECHNICAL INFORMATION DIVISION (TRI), Building 1210

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED.

When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

Do not return this copy. When not needed, destroy.

AVIONICS INTERFERENCE PREDICTION MODEL

Technical Report

ESD-TR-70-286

December 1970

DEPARTMENT OF DEFENSE
Electromagnetic Compatibility Analysis Center

Prepared by G. Morgan of the IIT Research Institute

DOD DISTRIBUTION STATEMENT

Distribution of this document is unlimited.

Published by
Electromagnetic Compatibility Analysis Center
North Severn
Annapolis, Maryland 21402

FOREWORD

The Electromagnetic Compatibility Analysis Center (ECAC) is a Department of Defense facility, established to provide advice and assistance on electromagnetic compatibility matters to the Secretary of Defense, the Joint Chiefs of Staff, the military departments and other DOD components. The Center, located at North Severn, Annapolis, Maryland 21402, is under executive control of the Director of Defense Research and Engineering and the Chairman, Joint Chiefs of Staff or their designees who jointly provide policy guidance, assign projects, and establish priorities. ECAC functions under the direction of the Secretary of the Air Force and the management and technical direction of the Center are provided by military and civil service personnel. The technical operations function is provided through an Air Force sponsored contract with the IIT Research Institute (IITRI).

This report was prepared for the Federal Aviation Administration in accordance with Task assignment 2 of Interagency Agreement DOT-FA70WAI-175 as part of AF Project 649E under Contract F19628-70-C-0291 by the staff of the IIT Research Institute at the Department of Defense Electromagnetic Compatibility Analysis Center.

To the extent possible, all abbreviations and symbols used in this report are taken from American Standard Y10.19 (1967) "Units Used in Electrical Science and Electrical Engineering" issued by the United States of America Standards Institute.

Users of this report are invited to submit comments which would be useful in revising or adding to this material to the Director, ECAC, North Severn, Annapolis, Maryland 21402, Attention ACV.

Reviewed by:

G. MORGAN

G. mon

Project Engineer

J. M. DETERDING

M. Q. Skeath

Director of Technical Operations

Approved:

Colonel, USAF

Director

M.A. SKEATH

Special Projects

Deputy Director

ACKNOWLEDGMENT

The following personnel at the Electromagnetic Compatibility Analysis Center contributed significantly to the model reported herein:

- L. Kuehn of the IIT Research Institute
- T. Bode of the IIT Research Institute
- R. Cleaver of the IIT Research Institute
- A. Herd of the IIT Research Institute

In addition, the assistance of Mr. R. Bock of the Federal Aviation Administration, who provided guidelines with respect to operational considerations as well as advice concerning the application of the model, is gratefully acknowledged.

ABSTRACT

An interference prediction model developed for use in evaluating expected interactions between avionics equipments on an airplane is described. The model is substantially automated and includes subroutines which calculate expected path losses between aircraft antennas and the rejection offered by the receivers to the undesired emissions from transmitters on the aircraft.

An analysis of the interactions between the equipments installed on an FAA Sabreliner has been made using the prediction model and the results of the analysis are described.

Requirements for expansion of the prediction model are established.

KEYWORDS

ANTENNA COUPLING AIRFRAME COUPLING SABRELINER AIRCRAFT COSITE PERFORMANCE MODELS

TABLE OF CONTENTS

Subsection	Page
SECTION 1	
INTRODUCTION	
BACKGROUND	1- 1
SECTION 2	
RESULTS AND CONCLUSIONS	
RESULTS	2- 1 2- 1
SECTION 3	
ANALYSIS	
SABRELINER DESCRIPTION Analysis Techniques Transmitted Power, P _T Antenna Gains, G _T ,G _R Path Loss, L _p Expected Error in L _p Sabreliner Coupling Loss Predictions Receiver Rejection, L _f Receiver Response Synthesis Receiver Tuned Frequency, f _R IF Bandwidth, B _r IF Skirt Slope, N ₁	3- 1 3- 5 3- 5 3- 6 3-12 3-13 3-16 3-19 3-19 3-19
RF Skirt Slope, N ₂	3-20

ESD-TR-70-286

TABLE OF CONTENTS (Cont.)

Subsection	Page
Spurious Response Limit Frequencies, f _a , f _b Transmitter Spectral Emission Synthesis Communications Transmitters Pulsed Transmitters Harmonic Emissions Rejection Calculation Degradation Thresholds, (S/I) _T Communications Receivers Navigation Receivers DME, TACAN Receivers ATC Transponder Receiver Radar Receivers Receiver Sensitivity, R _S	3-22 3-25 3-27 3-27 3-29 3-32 3-33 3-34 3-34 3-34
SECTION 4	
PROGRAM UTILIZATION	
General Parameter Card Transmitter Data Cards Receiver Data Cards Output Formats Suggested Operating Procedures First Level Analysis Second Level Analysis Third Level Analysis	4- 1 4- 2 4- 5 4- 6 4-10 4-11 4-12 4-13

TABLE OF CONTENTS (Cont.)

Subsection	Page
SECTION 5	
SABRELINER EMC EVALUATION	
	5- 1 5- 1 5- 2 5- 2 5- 2 5- 4 5- 4 5- 5 5- 5
SECTION 6	
MODEL EXPANSION POSSIBILITIES	
Improvement In Coupling Loss Predictions	6- 1 6- 1 6- 1 6- 2 6- 2 6- 2
LIST OF ILLUSTRATIONS	
Figure	Page
3- 1. FAA Sabreliner Antenna Complement	3- 2

ESD-TR-70-286

LIST OF ILLUSTRATIONS (Cont.)

Figure		Page
3- 2. 3- 3. 3- 4. 4- 1.	Curvature Factor, F(y) versus y	3-10 3-17 3-25 4- 7
	LIST OF TABLES	
Table		Page
3 1 3 2 3 3 4 3 5 3 6 4 1 4 2 4 3 5 1	SABRELINER EQUIPMENT COMPLEMENT INPUT ANTENNA GAINS POLARIZATION MISMATCH LOSSES PREDICTED SABRELINER EFFECTIVE COUPLING LOSSES RELATIVE TRANSISTOR MIXER CONVERSION LOSS IN dB RESULTS OF VOICE INTELLIGIBILITY TESTS GENERAL PARAMETER INPUT CARD FORMAT TRANSMITTER DATA CARD FORMATS RECEIVER DATA CARD FORMATS FIRST LEVEL ANALYSIS RESULTS LIST OF APPENDICES	3- 1 3- 7 3-14 3-15 3-24 3-33 4- 1 4- 2 4- 5 5- 1
Annondi	×	
Appendix		
	COUPLING LOSS SUBROUTINE COUPLING LOSS MEASUREMENT PROCEDURES FREQUENCY ANALYSIS SYSTEM (FAS) SUBROUTINE AVPAK PROGRAM SABRELINER FIRST LEVEL ANALYSIS OUTPUT DATA	
VI VII	REFERENCES DD FORM 1473	

SECTION 1

INTRODUCTION

BACKGROUND

The Federal Aviation Administration (FAA) has established a requirement for the development of a general analytical capability to determine the mutual effects resulting from the introduction of new avionics equipment to an existing airframe containing operational equipment. Accordingly, the Electromagnetic Compatibility Analysis Center (ECAC) (See Reference 1) agreed to develop an analytical modular model capability for the FAA which will enable rapid evaluation of these effects as the need arises.

In accordance with the specified agreement, the ECAC was to develop the capability to evaluate the mutual effects of the avionics packages associated with the FAA Sabreliner aircraft, specifically, and then to generalize the resulting models such that they may be applied to any other airframe/avionics configuration.

The FAA Sabreliner is a specially equipped aircraft used to monitor and evaluate performance of ground-based electronic navigational aids in the United States. The complement of radio and navigational equipment associated with the Sabreliner is summarized in TABLE 3-1. These were the specific units treated in this initial development.

OBJECTIVES

The objectives of this program were to:

- a. Develop an automated airframe coupling model.
- b. Develop performance models for the Sabreliner avionics equipment and, where possible, generalize these models to enable application to other similar types of equipment.
 - c. Establish requirements for future modeling activity.
- d. Perform an analysis of the FAA Sabreliner so that it may be used as a validation model for the developed analytical capability.
- e. Determine the expected mutual effects resulting from the installation of a VHF Satcom terminal on the Sabreliner.

CONSTRAINTS

The interference prediction model reported herein considers only antenna coupled interference. Interactions due to cable coupled interference, and effects due to interference radiated directly between equipments on the airplane, are not considered.

SECTION 2

RESULTS AND CONCLUSIONS

RESULTS

- 1. A modularized antenna coupled interference prediction model was developed which is substantially automated.
- 2. The program includes an automated coupling model which predicts the path losses between antennas on an airframe and an automated subroutine which calculates the effective rejection offered to undesired signals by the receiving systems.
- 3. An analysis was made of the expected mutual effects between the avionics equipments aboard the FAA Sabreliner flight inspection aircraft.
- 4. The expected effects resulting from the installation of an additional system, a proposed VHF Satellite Communications (SATCOM) terminal, were evaluated.
 - 5. A test plan for validation of the predicted coupling losses was proposed.

CONCLUSIONS

- 1. The existing avionics complement aboard the Sabreliner is capable of compatible operations, provided the frequency relationships identified in Section 5 are avoided. (See Section 5).
- 2. A VHF SATCOM terminal may be added to the Sabreliner complement without adverse effects, provided its operating frequency is above 133 MHz. (See Section 5).
- 3. The prediction model described herein is amenable to expansion and generalization to enable solution of situations involving aircraft-to-aircraft and aircraft-to-ground environment equipment as well as the intra-aircraft problem for which it was designed.

SECTION 3

ANALYSIS

SABRELINER DESCRIPTION

The FAA Sabreliner aircraft is a special version of the North American Rockwell Series 40 Sabreliner which has been equipped as a flight inspection facility. The radio and navigation equipment associated with the aircraft is summarized in TABLE 3-1.

TABLE 3-1
SABRELINER EQUIPMENT COMPLEMENT

Equipment	Quantity	Manufacturer	Function
RTA-41B DF-203	2	Bendix	VHF Communications
51Z-4	1	Collins Collins	Automatic Direction Finding Marker Beacon Receiver
WP-103A AVQ-65	1	Collins RCA	Weather Radar ATCRBS Transponder
DRA-12	1	Bendix	Doppler Navigation Radar
RNA-26CF ALA-51	3 1	Bendix Bendix	VOR/LOC Receivers Radio Altimeter
AN/ARC-109 618T-3	1	Collins	UHF Communications
RT-870/ARN-91	2	Collins Hoffman	HF Communications TACAN System

An illustration of the Sabreliner indicating the location and description of the antennas associated with these systems is shown in Figure 3-1.

Analysis Techniques

The analysis of the mutual effects of the operation of the equipment on the Sabreliner, including the analysis done by the automated computer model developed to assist in the effort, was accomplished by predicting the expected level of degradation relative to the degradation threshold of each receiver. The procedure used in the prediction process is

Figure 3-1. FAA Sabreliner Antenna Complement.

described below. Units for frequency and bandwidth, unless otherwise stated, are the same.

The undesired interfering power at the input terminals of a potential victim receiver can be calculated with the logarithmic form of the one-way system loss equation which is:

$$P_i = P_T + G_T + G_R - L_p - L_s$$
 (3-1)

where;

P_i = the input interfering power in decibels relative to one milliwatt (dBm).

 P_T = the transmitter output power in dBm.

G_T = the effective gain of the transmitting antenna in the direction of the receiving antenna in dB relative to an isotropic radiator (dBi).

GR = the effective gain of the receiving antenna in the direction of the transmitting antenna in dB relative to an isotropic radiator.

 $L_{\rm D}$ = the path loss between isotropic radiators in dB.

the combined system losses associated with the transmitter and receiver due to transmission lines, coupling devices, and external RF filtering in dB.

In the interest of conservatism, the system losses can usually be neglected without introducing significant errors. It was assumed herein that such losses are negligible. Therefore, the $L_{\rm S}$ term was dropped from further consideration at this time, but the capability to include such a factor has been retained for future application.

The effect of this interfering power depends on the response characteristics of the receiver circuitry prior to the detector and the input signal-to-interference ratio (S_{\parallel}) required by the receiver to perform without degradation in the presence of such an

interfering signal. This effect can be represented by:

If equation (3-2) is normalized to A and combined with (3-1), then

$$P_{ie} = P_T + G_T + G_R - L_p - L_f$$
 (3-3)

by the receiver to the undesired signal.

where:

Pie = the effective input interfering signal in dBm, which has been normalized relative to an undesired signal with the same characteristics as the desired signal.

In other words, the minimum level of an input desired signal required to produce a standard response is defined as the receiver sensitivity. If the interfering signal has different characteristics than the desired signal, the input level required to produce a standard response is different. This difference in levels can be considered as an on-tune receiver rejection factor for the interfering signal. The consideration of this factor with any additional off-frequency rejection resulting from the selectivity characteristic of the receiver can be considered as a total receiver rejection factor for the interfering signal.

The level of degradation caused by this signal can be evaluated by comparing the resulting signal-to-interference ratio to the required threshold S_{\parallel} ratio. If it is assumed that the input desired signal is at the receiver sensitivity level, then the degradation level is:

$$P_{ld} = P_{ie} - R_s + (S/_I)_T$$
 (3-4)

where:

P_{Id} = the degradation level relative to the threshold of the degradation in dB.

R_s = the sensitivity of the receiver in dBm.

 $(S_I)_T$ = the threshold input signal-to-interference ratio, in dB, required to prevent degradation.

If equations (3-3) and (3-4) are combined, then

$$P_{Id} = P_T + G_T + G_R - L_p - L_f + (S/I)_T - R_s$$
 (3-5)

where all of the terms have been defined.

If P_{Id} is greater than zero, then degradation is expected to occur; conversely, if P_{Id} is less than zero, degradation is not expected and further consideration need not be given to interactions between the particular transmitter and receiver involved.

Equation (3-5) is the expression solved by the analyst when studying a potential interference problem and by the developed automated program up to the point where a detailed manual analysis is required. Each of the terms in equation (3-5) is discussed below.

Transmitted Power, P_T

This parameter is a required input to the program and represents the average output power in dBm for communications transmitters and the peak output power for pulsed transmitters. This information can be obtained from the nominal characteristics of the equipment or from measured data.

Antenna Gains, G_T, G_R

These parameters are also required inputs to the program at the present time and they represent the expected gain to be realized along the propagation path between the antennas on the airframe. It is important to note that, since the area of consideration is confined to the intra-aircraft problem; the perturbations in the antenna patterns observed at great

distances from the aircraft, which are caused by irregularities in the airframe shape, are not expected to be realized. Further, since it is difficult, if not impossible, to measure the radiation pattern of antennas when the observation points as well as the antennas are located on the same aircraft, the values recommended for use in the program are the maximum theoretical values to be expected along the surface of the airframe in the direction of the transmission path between the antennas under consideration.

For non-aperture types of surface mounted antennas, such as monopoles, dipoles, blades, and loop antennas, the gain to be used is the maximum theoretical gain in the horizontal plane.

For aperture type antennas, such as parabolic reflectors, phased arrays, and horns, whose direction of maximum radiation is broadside to the airframe, the appropriate value to be used for the antenna gain is the value in the sidelobe or backlobe which is directed along the surface of the aircraft.

Certain of the values to be used can be obtained from manufacturer's data. When it is necessary to calculate the value theoretically, the expressions to be used can be obtained from References 2 and 3. The antenna gains used in this analysis are shown in TABLE 3-2. These gain characteristics are expected to be representative of most of the antennas used on airplanes for the indicated functions.

The specification of the antenna gains as required inputs for the automated model is consistent with the modular concept and enables greater flexibility for generalization of the prediction program. For example, if, in the future, the model is expanded to enable evaluation of mutual effects in inter-aircraft and aircraft-to-ground equipment considerations, an antenna gain calculation subroutine could be developed and included in the overall model. Such a subroutine could either be deterministic or statistical.

Path Loss, Lp

The path loss between isotropic radiators on an airframe is calculated using the technique reported by Hasserjian and Ishimaru (See Reference 4) and extended by Khan et al (See Reference 5). These efforts have shown that the path loss along a conducting curved surface can be calculated by:

$$\mathsf{L}_{\mathsf{pc}} \qquad \qquad = \qquad \mathsf{L}_{\mathsf{pf}} \; \mathsf{F}(\mathsf{y}) \tag{3-6}$$

TABLE 3-2 INPUT ANTENNA GAINS

Antenna No.	Function	Туре	Polarization	Gain (dBi)
1	Weather Radar	Parabolic	Horizontal	-10
2	Glide Slope	Dipole	Horizontal	2
3	TACAN	Blade	Vertical	2
4	ATC	Blade	Vertical	2
5	TACAN	Blade	Vertical	2
6	VHF/UHF Comm.	Blade	Vertical	2
7	TACAN	Blade	Vertical	2
8	UHF Comm.	Blade	Vertical	2
9	Doppler Radar	Array	Linear	-20
10	Marker Beacon	Loop	Horizontal	– 5
11	Altimeter	Horn	Horizontal	-20
12	TACAN	Blade	Vertical	2
13	UHF-DF	Loop	Vertical	2
14	VOR/ILS	Loop	Horizontal	2
15.	VOR/ILS	Dipole	Horizontal	2

Section 3 ESD-TR-70-286

where;

The curvature factor, F(y), is a complex infinite series in y which depends on the geometrical parameters of the path (See Reference 5).

The function y is:

$$y = R_1^{3/2}/\rho_1$$
 (3-7)

where:

$$R_1$$
 = the length of the curved ray path as normalized by the wave number, i.e. R_1 equals k times D_1 , where D_1 is the curved ray path and $k = 2\pi/\lambda$, where λ is the wavelength.

$$\rho_1$$
 = the curvature of the ray path as normalized by the wave number.

The parameter y is described below for various geometrical shapes found in practical airframes:

y =
$$K^{\frac{1}{2}} a \phi^{2} / \left[(\Delta Z)^{2} + (a\phi)^{2} \right]^{\frac{1}{4}}$$
 for a cylinder; (3-7a)
y = $(Ka)^{\frac{1}{2}} \phi^{3/2}$ for a sphere, (3-7b)

y =
$$(Ka)^{\frac{1}{2}} \phi^{3/2}$$
 for a sphere, (3-7b)

$$y \cong K^{\frac{1}{2}} (a_i a_j)^{\frac{1}{2}} \phi^2 / \left[(\Delta Z)^2 + a_i a_j \phi^2 \right]^{\frac{1}{4}}$$
 for a cone, (3-7c)

where:

the radius of the cylinder or sphere. a

^a i	=	the radius of the cone at the ith antenna location.
a _j	=	the radius of the cone at the jth antenna location.
ΔZ	= **	the distance between the antennas along the axis of the cylinder or cone.
φ	=	the angle in radians between the antennas on a plane defined by the two antennas and the center of the airframe.

The coordinate system used in describing these parameters and the solution of the magnitude of F(y) versus y in decibels are shown in Figure 3-2.

The path loss between the antennas on the surface when it has been flattened into a plane is calculated using the free space formula:

$$L_{pf}$$
 = $20 \log f_{MHz} + 20 \log D_1 - 38$ (3-8)

where

The distance, D₁, for the various geometrical shapes is:

D₁ =
$$a\phi$$
 for a sphere, (3-9a)

D₁ = $\left[(\Delta Z)^2 + (a\phi)^2 \right]^{\frac{1}{2}}$ for a cylinder, (3-9b)

D₁ $\cong \left[(\Delta Z)^2 + a_i a_j \phi^2 \right]^{\frac{1}{2}}$ for a cone, (3-9c)

Figure 3-2. Curvature Factor, F(y) versus y.

where all of the terms have previously been defined.

It should be noted that the expressions shown for an airframe shaped like a conical cylinder, are approximations rather than exact relationships. The reason for this situation is that one of the restrictions in the technical development of the curvature factor is a requirement that the curvature along the ray path between the antennas remain constant. When the antennas lie on a conical surface, this requirement is not completely satisfied. In practical airframes, however, it can be shown that the ray path length can be calculated with a high degree of accuracy by treating the cone as a modified cylinder with a radius equal to the geometric mean of the radii of the cone at the locations of the antennas. The limitation of this approximation is that the apex angle of the cone cannot exceed 20 degrees. This limitation is satisfied for the Sabreliner where the apex angle is approximately 14 degrees. This result leads intuitively to the finding that the curvature factor between two antennas on a cone lies between those factors which would be calculated if the cone were replaced by two cylinders having radii equal to the cone radii at each of the two antennas.

When this type of computation is made for the worst case situation found on the Sabreliner, it is found that the theoretical error to be expected in the total coupling loss lies in the range of 0 - 2dB. This minimal error occurs when determining the total loss between the VHF antenna mounted on the top centerline and the UHF direction-finding antenna mounted on the bottom centerline.

The remaining restrictions which affect the application of this technique include geometrical limitations which insure that the respective antennas do not lie within each others Fresnel (near-field) region. These geometrical restrictions place a lower limit on the frequencies at which the coupling loss can be calculated. For example, the HF wire antenna, the Sabreliner airframe length, and the high-frequency wavelengths are all of comparable magnitude. As a result the entire airframe can be expected to be a part of the HF antenna system. Any considerations of the coupling loss to be expected along the airframe, consequently become intra-antenna system (near-field) considerations. Thus, this technique cannot be applied to HF systems. In fact, there is no known practicable analytic solution to this type of problem.

The expressions given above for circular cylinders and conical-cylinders have been automated. This automated model is used as a subroutine in the overall interference prediction model. Additional details of the program, including the mathematical development of the geometrical considerations involved, are contained in Reference 6.

The input data required for this subroutine are:

a. Z_i = The frame number of the ith antenna. This corresponds to a Z axis dimension in inches.

- b. ϕ_i = The angle around the airframe of the ith antenna location in degrees, using the top centerline as the zero degree reference.
- c. f_i = The operating frequency of the transmitter associated with the ith antenna in MHz.
- d. The antenna height in feet from the centroidal axis of the airframe, i.e., the radius of the airframe at the ith antenna.

For those considerations involving the losses between the navigational antennas on the vertical stabilizer and the transmitting antennas along the bottom centerline of the fuselage, the path is considered to be composed of a partial freespace path between the stabilizer antenna and a point on the surface of the fuselage, and then a remaining surface wave path along the fuselage. The point of tangency satisfying the required conditions for the shortest path between the antennas is computed, the characteristics of each portion of the path are determined, and then the total loss is calculated using the same techniques previously described. The expressions used to evaluate these paths are explained in Reference 6.

Logical flow diagrams and a program listing written in the Fortran V language are contained in APPENDIX I.

Expected Error in Lp

Previous measurements have been made to validate predictions made with this technique. A total of 121 measurements were made in a KC-135 aircraft in the UHF (225-400 MHz) portion of the spectrum. The results of the validation effort may be summarized as follows:

- 1. Of the 121 measurements, only two were considered suspect and omitted from the comparison.
- 2. The mean error between the predictions and the remaining 119 observations was 0.5 dB and the standard error was 4 dB.
- 3. The distribution of the errors appears to be normal about a mean of 0 dB with a standard deviation of 4 dB, based on a chi-squared test at a 0.05 significance level. Further details on these data are contained in Reference 6.

Sabreliner Coupling Loss Predictions

Since an isotropic radiator does not exist, the path loss between two such antennas cannot be measured. However, an effective coupling loss, which includes the effect of the respective antenna radiation characteristics can be measured.

The effective coupling loss can be calculated from the following equation:

$$C_e = G_{Te} + G_{Re} + P - L_p$$
 (3-10)

where:

C_e = the transmission loss between the transmitting and the receiving antennas in dB.

G_{Te},G_{Re} = the effective gain relative to an isotropic antenna of the transmitting and receiving antennas in the direction of the ray path between the antennas.

P = the polarization mismatch between the antennas.

 L_p = the path loss as previously defined.

Polarization mismatches, P, which can be expected are shown in TABLE 3-3. These values have been used in this analysis for the non-aperture antennas. For the aperture antennas, the values are appropriate only when considering the radiation in the mainbeam of the pattern. When sidelobe or backlobe radiation is being considered, no polarization mismatch is assumed to exist. These correction factors are not currently included in the automated model. They could, however, be included in any antenna gain calculation subroutine which might be developed in the future.

In addition to the parameters discussed above, an additional factor must be considered in connection with the paths between the antennas located in front of the metal nose bulkhead, and the antennas behind the bulkhead. A knife-edge diffraction loss can be expected along these paths due to the obstruction created by the bulkhead. Bullington presents a nomograph which can be used to calculate these losses (See Reference 2, Chapter 33). This nomograph has been automated in equation form and this additional loss factor is automatically included when the transmission path crosses the nose bulkhead.

The equation used is

$$L_K$$
 = $10 \log h^2 f/20d$ (3-11) where:

 L_K = the knife-edge diffraction loss in dB.

h = the height of the obstruction above the line-of-sight path in feet.

f = the transmitted frequency in megahertz.

d = the distance between the bulkhead and the nearest antenna under consideration in feet.

TABLE 3-3
POLARIZATION MISMATCH LOSSES

Transmitting Antenna Polarization		on Mismatch antenna Pola	•	
	Horizontal	Vertical	Linear	Circular
Horizontal	0	-20	-3	-3
Vertical	-20	0	-3	-3
Linear (45°)	-3	-3	0	0
Circular	-3	-3	0	0

The predicted effective coupling losses in dB between the antennas on the Sabreliner are shown in TABLE 3-4. The antennas are numbered as shown in TABLE 3-2 and may be identified by referring to that table.

TABLE 3-4
PREDICTED SABRELINER EFFECTIVE COUPLING LOSSES

Transmitting Antenna and Nominal Frequency

Effective Coupling Loss in dB Receiving Antenna

	-	2	က	4	5	9	7	8	6	10	11	12	13	14	15
1 – 9315 MHz	I	*	82	78	93	96	86	100	112	113	129	107	109	110	111
3 – 1025 MHz	54	99	ı	57	55	78	39	40	96	102	84	72	74	70	71
4 – 1090 MHz	49	55	57	-	34	37	78	78	9/	73	70	48	49	70	71
5 — 1025 MHz	65	64	55	34	1	24	80	19	63	70	67	46	47	82	85
6 - 135 MHz	40	44	30	19	11	ı	38	37	39	51	49	27	29	57	57
6 – 300 MHz	51	55	42	26	18	1	54	53	46	59	56	34	36	67	67
7 – 1025 MHz	70	9/	39	78	80	80	-	22	100	103	92	72	70	89	89
8 - 135 MHz	44	59	23	38	37	37	2		59	65	09	38	37	49	20
9 – 8800 MHz	121	96	135	81	9/	72	176	176	ı	87	105	83	85	131	128
11 — 4300 MHz	118	96	110	81	78	77	132	133	101	63	I	64	71	114	111
12 – 1025 MHz	80	78	72	48	46	45	73	73	64	09	36	ı	31	80	80

*Note: These antennas are spaced too closely to enable a prediction.

It is suggested that the accuracy of the predictions be established. A test plan setting forth procedures which can be used to validate these predictions is contained in APPENDIX II. Briefly, the plan contains two methods for obtaining the coupling losses between antennas on the Sabreliner. One of the methods is a directly indicating technique which may be used for the losses at frequencies below 1000 MHz. The second method is a signal substitution technique suitable for use at frequencies above 1000 MHz. Equipment types and layouts are described in the plan and sequential procedures for determining the losses are presented.

Receiver Rejection, Lf

The rejection offered to an undesired emission by a potential victim receiver is calculated by a subroutine known as the Frequency Analysis System (FAS). A simplified explanation, which is largely intuitive, is given herein. This treatment will enable the reader to understand the operation of FAS and will prepare him for the more detailed information, including a purely mathematical presentation, given in Reference 7.

For a given transmitter-receiver pair, FAS synthesizes the receiver response characteristic and the transmitter spectral emission characteristic by a series of line segments which are linear on a logarithmic scale. Each of these synthesized models is normalized to unity at the tuned frequency of the equipment such that the characteristics described are relative to the performance at the tuned frequency. When this synthesis is complete, FAS determines the rejection by integrating over the areas of frequency overlap between the transmitted emission and the receiver response. Two cases are considered. The first case examined involves a calculation of the relative energy transfer to be expected due to the emission sidebands which lie within the passband of the receiver. The second case examined is the expected energy transfer resulting from inadequate receiver selectivity at the frequencies within the fundamental emission bandwidth of the transmitter. These two cases are compared and the worst situation, i.e. the least amount of rejection, is chosen as the appropriate rejection for the given equipment pair.

Receiver Response Synthesis

The receiver relative response characteristic is synthesized by four line segments, which are linear on a logarithmic scale, and appears as shown in Figure 3-3.

The parameters shown are defined as:

 f_R = the tuned frequency of the receiver.

B_r = the intermediate frequency (IF) bandwidth of the receiver.

 N_1 = the slope of IF selectivity skirt in dB per decade.

Figure 3-3. Receiver Relative Response Characteristic.

 f_1, f_2 = the lower and upper frequencies, respectively, where spurious responses must be considered. These frequencies should be selected to coincide with the intersection of the K_s level with the IF selectivity curve.

k_s = the spurious response rejection of the receiver.

 f_a, f_b = the lower and upper frequencies, respectively, at which spurious responses need no longer be considered. These frequencies should be selected to coincide with the intersection of the K_s level with the RF circuitry selectivity curve.

N₂ = the slope of the RF selectivity skirt in dB per decade.

The response characteristic may be expressed mathematically as:

$$r(f)$$
 = 1, when $\left(f_R - \frac{B_r}{2}\right) < f < \left(f_R + \frac{B_r}{2}\right)$ (3-12a)

r (f) =
$$\left(\frac{\frac{B_r}{2}}{f - f_R}\right)^{n_1}$$
, when $f_1 < f < f_R - \frac{B_r}{2}$, (3-12b)

or
$$f_2 > f > f_R + \frac{B_r}{2}$$

$$r(f) = k_s, \text{ when } f_a < f < f_1$$
 (3-12c)

or
$$f_b > f > f_2$$

$$r(f) = k_s \left(\frac{f_b - f_R}{f - f_R} \right)^{n_2}, \text{ when } f_b < f$$
 (3-12d)

$$r(f) = k_s \left(\frac{f_a - f_R}{f - f_R} \right)^{n_2}, \text{ when } f < f_a$$
 (3-12e)

where:

Then:

R(f) = the relative response in dB where R(f) = 10
$$\log r(f)$$
, and
$$K_s = 10 \log k_s.$$
N₁,N₂ = 10 n₁, 10 n₂ respectively

Except for f_1 and f_2 , the parameters shown are required inputs for the FAS subroutine. Methods of determining these parameters are explained below.

Receiver Tuned Frequency, fR

The tuned frequency of the receiver is obtained from the frequency assignment appropriate to the receiver being considered.

IF Bandwidth, B_r

The intermediate frequency bandwidth is obtained from the nominal characteristics of the receiver, usually set forth in the manufacturer's data or Technical Manual describing the equipment, or it is obtained from measured data.

IF Skirt Slope, N₁

This parameter is extracted from the given IF selectivity characteristics. It is the slope of the skirt in dB per decade. For example, the nominal characteristics of a receiver may specify that the IF selectivity of a receiver has a 20 dB bandwidth of BW_1 and a 60 dB bandwidth of BW_2 . Then n_1 is obtained from:

(60 - 20) dB =
$$40 dB = 10 n_1 log \frac{BW_2}{BW_1}$$
 (3-13a)

and.

$$N_1 = \frac{40}{\frac{BW_2}{BW_1}}$$
 (3-13b)

RF Skirt Slope, N₂

The characteristics of the RF circuitry usually must be theoretically synthesized, unless measured data are available. However, measured RF characteristics are normally available only as a result of a special effort intended to study such characteristics. Accordingly, two alternate methods for synthesizing the RF selectivity are presented.

The first method requires information concerning the receiver design, i.e., the number of tuned circuits preceding the first mixer in a receiver. This information can be obtained by examination of the circuit diagrams included in the technical manual describing the equipment. When the number of tuned circuits is known, the relative response of the circuitry can be calculated from the following equation:

$$R_{RF}$$
 = $20 \log \left[1 + \left(\frac{2 |f - f_R|}{f_R} Q_s \right)^2 \right]^{-n/2}$ (3-14a)

or

$$R_{RF} = -10n \log \left[1 + \left(\frac{2 \left|f - f_{R}\right|}{f_{R}} O_{S}\right)^{2}\right]$$
 (3-14b)

where:

R_{RF} = the response in dB relative to the response at the tuned frequency of the receiver.

n = the number of tuned circuits preceding the first mixer.

f = the frequency at which the relative response is required.

f_R = the tuned frequency of the receiver.

Q_s = the selectivity factor of each tuned stage as defined by:

$$Q_{S} = \frac{f_{R}}{2|f - f_{R}|} \mathbf{3}_{dB}$$
 (3-15)

Where

$$2 | f - f_R |_{3dB}$$
 = the 3 dB bandwidth of the stage.

The parameter, Q_s is not generally available and must be estimated. An estimated Q_s of 50 yields sufficiently conservative results for most analyses.

The solution of equation (3-14) as a function of frequency will yield the relative selectivity of the RF circuitry of the receiver. The parameter, n_2 is equivalent to 2n, where n is the number of tuned circuits or

$$N_2 = 10 n_2 = 20 n$$

In certain cases, the number of tuned circuits preceding the mixer is unknown but the RF 3 dB bandwidth is specified along with the image rejection. When these parameters are given, an alternative method for estimating the RF characteristics can be used.

The image frequency of a receiver is separated from the tuned frequency by twice the intermediate frequency. If an "image bandwidth" is defined as equal to four times the intermediate frequency, i.e., twice the image frequency separation from the tuned frequency, then the parameter N₂ can be approximated by:

$$K_1 - 3dB \cong 10 \text{ n}_2 \log \frac{BW_1}{BW_3dB}$$
 or, (3-16a)

$$N_{2a} \cong \frac{K_1 - 3 dB}{\log \frac{BW_1}{BW_3 dB}}$$
(3-16b)

 N_{2a} = the approximate value of N_2

 K_1 = the image rejection in dB.

BW₁ = the "image bandwidth" defined above (note that this bandwidth is a mathematical device and not a physical reality).

BW_{3dB} = the specified 3dB RF bandwidth of the receiver.

It should be noted that, since the universal resonance curve, when plotted on a logarithmic scale, is rounded rather than linear in the vicinity of the 3dB bandwidth, the value of N_{2a} obtained from equation (3-16) will be slightly larger than is appropriate. Therefore, this value should be rounded off to the nearest multiple of 20 which is less than that value. Thus, $N_2 = N_{2a}$ rounded down to the nearest multiple of 20. When this value of N_2 is determined, then n, the number of stages, is obtained by dividing by 20. A corresponding value of O_s for the RF circuitry can then be calculated by:

$$Q_s = Q_0[2^{1/n}-1]^{1/2}$$
 (3-17)

where:

Q_s = the effective selectivity factor for each tuned circuit preceding the mixer.

Q₀ = the overall selectivity factor for the n tuned circuits.

n = the number of tuned circuits as determined above.

The computation of the two parameters, Q_s and n, results in values which can be used in equation (3-14) above to estimate the RF selectivity characteristics of the receiver.

If neither of these alternatives is feasible due to a lack of information, then a conservative value of 20 should be used for N₂. This will result in a worst case prediction of the relative response characteristic of the receiver in this region of frequencies.

Spurious Response Rejection, K,

The minimum spurious response rejection is usually specified in the nominal characteristics of the receiver. If not, a worst case rejection level can be estimated in the following manner. Spurious responses arise in a superhetrodyne receiver when a high level interfering signal combines in the mixer circuitry and a product at or near the intermediate frequency of the receiver is generated. In general, the most sensitive of these responses arise due to the mixing of the incoming signal and the first local oscillator in the first mixer stage. The frequencies at which the interfering signal can excite these responses is given by:

$$f_{sp} = \underbrace{pf_{lo} + f_{lF}}_{q} \tag{3-18}$$

where:

f _{sp}	=	the frequency of the incoming interfering signal.
f_{lo}	=	the injection frequency of the local oscillator.
fIF	= "	the intermediate frequency of the receiver.
р	=	the harmonic of the local oscillator involved in the mix.
q	=	the harmonic of the incoming signal involved in

The fact that the sign preceding $f_{\parallel F}$ in equation (3-18) can take on either sense (±) indicates that for a given p,q combination, a pair of responses can be predicted, one for the negative sense and one for the positive sense. In a superheterodyne receiver, the local oscillator frequency, $f_{\parallel O}$, is related to the tuned frequency, $f_{\parallel O}$ as follows:

$$f_{lo} = f_R \pm f_{lF}, \qquad (3-19)$$

where the positive sense is appropriate when the oscillator frequency is above the tuned frequency and the negative sense is appropriate when the reverse situation obtains.

The combination of equations (3-19) with (3-18) yields two sets of relationships:

$$f_{sp} = \frac{\frac{pf_R}{q} + \frac{(p+1) f_{IF}}{q}}{and}$$

$$\frac{pf_R}{q} + \frac{(p-1) f_{IF}}{q}$$
and:
$$(3-20a)$$

$$f_{sp} = \frac{\frac{pf_R}{q} - \frac{(p+1) f_{IF}}{q}}{\text{and}}$$

$$\frac{pf_R}{q} - \frac{(p-1) f_{IF}}{q}$$

$$\frac{pf_R}{q} - \frac{(p-1) f_{IF}}{q}$$

$$\frac{pf_R}{q} - \frac{(p-1) f_{IF}}{q}$$

$$\frac{pf_R}{q} - \frac{(p-1) f_{IF}}{q}$$

These expresssions enable a determination of the frequencies at which an incoming signal can result in the most sensitive spurious responses. Note that when p=q=1, the pair of responses which result are the receiver response to its tuned frequency and the response to its image frequency. The relative rejection at the tuned frequency is zero and, from the previous discussion, it is known that the relative rejection at the image frequency is merely the RF rejection at that frequency.

The relative spurious rejection for any other p,q combination is the product of the RF rejection at the incoming frequency, f_{sp}, and the relative mixer conversion loss for the p,q combination being studied. This can be expressed logarithmically as:

where:
$$K_{S} = R_{RF} \begin{vmatrix} + \mu_{C} \\ f = f_{SP} \end{vmatrix} p, q$$

$$K_{S} = the relative spurious rejection in dB.$$

$$K_{RF} = the relative rejection of the RF circuits to f_{SP} in dB.
$$\mu_{C} = the mixer conversion loss to the actual p, q combination relative to the mixer conversion loss to the $p = q = 1$ combination.$$$$

In a previous ECAC measurement effort, representative values of the relative mixer conversion losses for a transistor mixer were established. These values are shown in TABLE 3-5.

TABLE 3-5
RELATIVE TRANSISTOR MIXER CONVERSION LOSS IN dB

-							_
	PQ	1	2	3	4	5	
	1	0	-65	-76	-84	-83	
	2	-13	-58	-77	-83	-83	
	3	-13	-65	-77	-81	-82	
	4	-20	-62	-81	-81	-82	
	5	-22	-62	-78	-84	-82	

The relative spurious rejection level obtained with equation (3-21) for the most susceptible response, excluding the image response, is the value which should be used as an input to the program. The image rejection is also a required input but the image response is treated as a special case when this phenomenon is a potential problem. When this latter situation does arise, the receiver is synthesized around the image frequency in an identical manner to the synthesis about the tuned frequency, except that the relative threshold is reduced by the input image rejection.

Spurious Response Limit Frequencies, fa,fb

As stated previously, these frequencies are determined from the point where the K_s level intersects the RF selectivity curve. It should be noted, however, that f_a and f_b are discrete frequencies, rather than frequency separations. Since the RF selectivity is usually specified in terms of response versus frequency separation, the intersection point is more readily obtained in terms of a frequency separation. It is necessary, therefore, to add this separation to (or subtract it from) the receiver tuned frequency to obtain the appropriate values of f_a and f_b . As will be seen later, this situation has ramifications involving different levels of refinement in the analysis.

Transmitter Spectral Emission Synthesis

The synthesis of the envelope of the spectral characteristics of the transmitted emission is synthesized by three line segments which are linear on a logarithmic scale as shown in Figure 3-4.

Figure 3-4. Relative Spectral Emission Envelope Characteristic.

The parameters shown are identified as:

 f_T = the tuned frequency of the transmitter.

 B_{1T} = the 3 dB emission bandwidth.

 M_1 = 10 m_1 the slope of the emission envelope at frequencies adjacent to the 3 dB bandwidth in dB/decade.

B_{2T} = the emission bandwidth at which the envelope shows a different fall-off characteristic.

M₂ = 10 m₂ = slope of the emission envelope at frequencies greatly separated from the tuned frequency in dB/decade.

The emission characteristic may be expressed mathematically as:

$$t(f) = 1 \text{ when } \left(f_T - \frac{B_{1T}}{2}\right) < f < \left(f_T + \frac{B_{1T}}{2}\right)$$
 (3-22a)

$$t(f) = \left(\begin{array}{c} \frac{B_{1T}}{2} \\ \hline f - f_{T} \end{array} \right)^{m_1}$$
 (3-22b)

when
$$\left(f_{T} + \frac{B_{1T}}{2}\right) < f < \left(f_{T} + \frac{B_{2T}}{2}\right)$$
or $\left(f_{T} - \frac{B_{2T}}{2}\right) < f < \left(f_{T} - \frac{B_{1T}}{2}\right)$

$$= \left(\frac{B_{1T}}{B_{2T}}\right)^{m_{1}} \times \left(\frac{B_{2T}}{2}\right)^{m_{2}}$$

$$= \left(f_{T} + \frac{B_{2T}}{2}\right) \times \left(f_{T} - \frac{B_{2T}}{2}\right)$$
when $\left(f_{T} + \frac{B_{2T}}{2}\right) < f$
or $f < \left(f_{T} - \frac{B_{2T}}{2}\right)$

where:

t(f) = the relative level of the spectral emission envelope at frequency f; and,

T(f) = 10 log t(f), the relative level in decibels.

Each of these parameters must be specified as inputs to the FAS subroutine and may be determined in the following manner.

Communications Transmitters

The required inputs to enable synthesis of the spectral envelope of communications transmitters may be set forth into two categories, AM and FM cases. The inputs for the AM transmitters are:

B _{1T}	=	2 f _m , where f _m is the highest modulation frequency.
M ₁	=	80 dB per decade.
B _{2T}	=	20 f _m .
M_2	=	20 dB per decade.

The inputs for the FM transmitters are:

B _{1T}	=	$2 f_d$ where f_d is the rated frequency deviation.
M ₁	=	80 dB per decade.
B _{2T}	=	20 f _d .
M ₂	=	20 dB per decade.

The specification of 20 dB/decade for M_2 represents the expected minimum fall-off characteristic of the noise sidebands of these transmitters. If an external RF filter is used in conjunction with the transmitter, the fall-off characteristic of the filter should be added to M_2 .

Pulsed Transmitters

The required inputs for pulsed transmitters can also be categorized into two cases, i.e., pulsed transmitters without frequency modulation during the pulse interval (PO emission), and pulsed transmitters with frequency modulation during the pulse interval, i.e. "chirped"

pulses (P9 emission).

For P0 emissions, the spectral envelope can be found using the methods described in Reference 8. The results are:

$$\begin{array}{lll} B_{1T} & = & 1.28/\left(\,2\,r + t_r + t_f\right) \\ M_1 & = & 20\,dB/decade \ for \ trapezoidal \ pulses \ and \ 40 \ dB/decade \ for \ shaped \ pulses. \\ \\ B_{2T} & = & 0.32\left(\frac{1}{t_r} + \frac{1}{t_f}\right) \\ M_2 & = & 40\,dB/decade, \\ \\ \text{where:} & \\ \tau & = & the \ pulse \ width \ between \ one-half \ amplitude \ points. \\ \\ t_r & = & the \ time \ required \ for \ the \ pulse \ to \ rise \ from \ its \ 10 \ percent \ amplitude \ point, \ i.e., \ the \ pulse \ rise \ time. \\ \\ t_f & = & the \ time \ required \ for \ the \ pulse \ to \ drop \ from \ its \ 90 \ percent \ level, \ i.e., \ \\ \end{array}$$

The parameters, τ , t_r , and t_f can be obtained from the nominal characteristics of the equipment.

the pulse fall time.

The determination of the envelope parameters of a chirped pulse can be quite complex (See Reference 9), and the resulting emission spectral envelope for such a pulse is not always amenable to a three line segment synthesis technique. However, for most practical cases, the required inputs can be determined as:

$$B_{1T} = f_d \left[1 - \left(\frac{2}{D} \right)^{\frac{1}{2}} \right]$$

where:

f_d = the total frequency deviation during the pulse.

the Dispersion ratio =
$$\tau$$
 f_d, where τ is the total duration of the pulse.

$$B_{2T} = f_{d} \left[1 + \left(\frac{2}{D} \right)^{1/2} \right]$$
and:

$$M_{1} = \text{the Dispersion ratio} = \tau f_{d}, \text{ where } \tau \text{ is the total duration of the pulse.}$$

$$f_{d} \left[1 + \left(\frac{2}{D} \right)^{1/2} \right]$$

$$= \text{the Slope of the line in dB/decade which joins the points } \frac{B_{1T}}{2} \text{ and } \frac{B_{2T}}{2} \text{ when those points are plotted on a logarithmic scale.}$$

40 dB/decade.

Harmonic Emissions

M2

In addition to synthesizing the envelope of the spectral characteristics of the fundamental emission of the transmitter, the model also automatically synthesizes the spectral envelopes of the transmitted harmonics up to a maximum of the ninth harmonic. In doing so, the subroutine assumes that the spectral characteristics of each harmonic are identical to that of the fundamental except that the reference point is reduced by a level in dB equal to the attenuation specified as appropriate to the harmonic. The attenuation level for each harmonic to be considered is a required input parameter.

Rejection Calculation

After the receiver response and spectral emission characteristics have been synthesized, and each has been normalized to the level appropriate at the tuned frequency of the equipment, the expected rejection offered by the receiver to the undesired emission can be calculated using only frequency relationships. The development of this concept is given below.

The spectral power density of an emission can be approximated by:

$$P_D$$
 = P_T (3-23)
where: P_D = the spectral density in watts/Hz.

Thus P_D represents an approximation to the average energy content in the emission. However, the receiver can only intercept that energy for a period of time equal to its "response time". The "response time", τ_R , of a receiver can be considered to be the inverse of its 3 dB bandwidth. Accordingly, the maximum power transfer between a transmitter and receiver can be calculated by:

$$P_{r} = \frac{P_{D}}{\tau_{R}} = \frac{P_{T}}{B_{1T}(\tau_{R})} = P_{T} \frac{B_{R}}{B_{1T}}$$
 (3-24)

where:

$$P_r$$
 = the average received power in watts.
 B_R = the 3 dB bandwidth of the receiver.

The receiver rejection, I_f, is the ratio of the received power to the transmitted power:

$$I_f$$
 = $\frac{P_r}{P_T} = \frac{B_R}{B_{1T}}$ or in logarithmic terms, (3-25)
 I_f = 10 log I_f = 10 log $\frac{B_R}{B_{1T}}$

This maximum power transfer occurs when the transmitter and receiver are tuned to the same frequency. Therefore, a co-channel rejection factor $(I_f)_{CO}$ can be defined as:

$$(I_f)_{co} = \frac{B_R}{B_{1T}} \cdot \text{when } B_{1T} > B_R$$
 (3-26)
$$1 \text{ , when } B_{1T} \leq B_R$$

The reason for the two cases is evident when it is remembered that a receiver cannot receive more power than is transmitted.

It should be noted, however, that the co-channel rejection factor in equation (3-26) has been defined in terms of average power. When the undesired emitter is a pulsed transmitter, the peak received power is usually of more interest than the average received power. Thus for a pulsed transmitter:

Section 3 ESD-TR-70-286

$$(P_T)_{avg} = (P_T)_{pk \ \tau} (PRF)$$
 (3-27)

where:

$$(P_T)_{avg}$$
 = the average power in watts.
 $(P_T)_{pk}$ = the peak power in watts.
 τ = the pulse duration in seconds.

PRF the pulse repetition frequency in hertz.

If equation (3-27) is combined with equation (3-24) then:

$$(P_R)_{avg} = (P_T)_{pk \ \tau} (PRF) \frac{B_R}{B_{1T}}$$
 (3-28)

However, in a pulsed transmitter, $\tau \simeq \frac{1}{B_{1T}}$, and the average received power $(P_R)_{avg}$ is related to the peak received power, (PR)pk, by:

$$(P_R)_{avg} = (P_R)_{pk} \tau_R PRF$$
 (3-29)

where:

$$au_{\rm R}$$
 = the response time of the receiver, which is approximately $\frac{1}{B_{\rm R}}$. Thus, combining equation (3-29) with equation (3-28) and defining a co-channel rejection

factor for pulsed emissions, it is seen that:

$$(I_f)_{CO} = \begin{pmatrix} \frac{B_R}{B_{1T}} \end{pmatrix}^2, \text{ when } B_{1T} > B_r$$

$$1 \text{ when } B_{1T} \leq B_r,$$

$$(3-30)$$

for considerations involving the peak power transfer due to a pulsed transmitter.

Since the co-channel rejection has been determined, the total rejection, L_f, at any frequency can be calculated by:

$$L_{f} = (L_{f})_{co} + R(f_{T}), \qquad (3-31)$$

for considerations involving the power transfer resulting the fundamental emission of the transmitter due to inadequate receiver selectivity; and

$$L_{f} = (L_{f})_{co} + T(f_{R}),$$
 (3-32)

for considerations involving the power transfer resulting from the emission sidebands which occur within the receiver passband, where:

$$R(f_T)$$
 = the relative response of the receiver at frequency f_T .

 $T(f_R)$ = the relative emission level of the transmitter at frequency f_R .

The FAS subroutine essentially calculates the value of L_f for each of the situations given above, compares the two values, and selects the lowest of the values obtained for use in equation (3-5). However, since both the relative response characteristic of the receiver and the relative emission levels of the transmitter can vary over a range of frequencies, the computation is made using integration techniques.

Further details on the subroutine, including a rigorous mathematical description of the calculation techniques, are contained in Reference 7. A logical flow diagram and a program listing written in the Fortran V language are contained in APPENDIX III.

Degradation Thresholds, (S/I)_T

The input signal-to-interference ratio at which operational degradation begins to occur in a receiver is defined as the degradation threshold and is identified by the symbol (S/I)_T. This threshold is a required input parameter for each receiver under consideration.

Communications Receivers

The required signal-to-interference ratios for the receivers used for voice communications were obtained from Reference 10, which contains the results of subjective listener tests made to establish the intelligibility of voice transmissions as a function of the input signal-to-interference ratios. The tests were conducted using ATC specialists as subjects and normal ATC messages as well as modified rhyme test (MRT) words as the test

messages. The interfering signals used were FM and AM signals. The pertinent results are summarized in TABLE 3-6.

TABLE 3-6
RESULTS OF VOICE INTELLIGIBILITY TESTS

Worst Case Input (S/I) for 100 % Intelligibility (dB)

Type of Message	FM Desired Signal	AM Desired Signal				
ATC	9	0				
MRT	15	10				

The levels shown for the ATC message thresholds are considered appropriate for trained commercial pilots while the MRT message thresholds are applicable to inexperienced pilots who are not necessarily familiar with ATC messages.

Navigation Receivers

The only documentation describing the threshold appropriate to the VOR/ILS receivers was found in Reference 11, which states that an $(S/I)_T$ of 20 dB is required to prevent degradation in these receivers.

DME, TACAN Receivers

Reference 11 states that a signal-to-interference ratio of 8 dB is required to insure satisfactory operation of this type of receiver. However, measurements conducted on a representative airborne TACAN receiver (See Reference 12), indicated that a $(S/I)_T$ of 10 dB is required in the presence of a CW interfering signal and a $(S/I)_T$ of -10 dB is required in the presence of an interfering IFF pulse. During these tests, the TACAN receiver was being operated in an air-to-air mode on 1090 MHz and an IFF reply code of 1311 was used as the interfering signal. No degradation due to this coded reply was observed when the TACAN receiver was operated within the 962-1024 MHz or 1151-1213 MHz frequency ranges.

ATC Transponder Receiver

Measurements reported in Reference 13 indicate that the threshold of degradation to be expected for the ATC transponders used on commercial airlines is 10 dB, if the interfering signal is a CW emission and 0 dB, if the interfering signal is a pulsed emission. Although the measurements were not conducted on the type of transponder installed on the Sabreliner, the similarities in the design of the two units and the interference rejection features of each indicate that the performance of the Sabreliner transponder can be expected to be equivalent to, if not superior to, the performance of the tested transponder in the presence of interference.

Radar Receivers

No information has been found which specifies the degradation thresholds for the receivers employed in the weather radar, the doppler radar, and the altimeter systems. Therefore, a conservative value of 10 dB has been assumed for these analyses.

Receiver Sensitivity, RS

The sensitivity, or performance threshold, of each receiver to be considered is a required input parameter for the analyses. It can be obtained from the nominal characteristics describing the equipment or from measured data.

SUMMARY

This section has described the model developed to predict potential interference interactions between equipments on an airplane. The prediction model has been developed and automated as an equation relating the expected effective interfering power at the input of a receiver to the effective power which would result in degradation. This approach provides inherent flexibility within the model in that each parameter in the expression can be replaced with a subroutine and individual subroutines can be replaced. Thus, the model is amenable to extension or expansion into a larger model capable of predicting inter-aircraft and aircraft-to-ground environment interactions as well as the intra-aircraft analysis for which it was developed.

The model is not sensitive to a particular airframe or to particular equipment types. The airframe coupling model is valid for all practical airframes. The ability to evaluate the interactions in different types of equipments is inherent due to the requirement that the individual equipment performance models are established external to the prediction model and

used as input parameters. At the present time, these performance models are developed manually and the methods used to accomplish this effort have been described herein. This phase of the problem can also be substantially automated through the development of an equipment synthesis pre-processor.

SECTION 4

PROGRAM UTILIZATION

This section presents information related to the use of the program for interference analysis. The input and output data are described, and a discussion of the procedures followed by the program is presented. Finally, the methods necessary for more refined analyses are explained.

Input Data

The program requires input data on standard 80 column automatic data processing punch cards. The cards are: one general parameter card; two data cards for each transmitter, and two data cards for each receiver. Three card field formats are used to present the data; alpha-numeric characters, integral characters, and floating point decimal characters.

General Parameter Card

The format of the general parameter card is shown in TABLE 4-1.

TABLE 4-1
GENERAL PARAMETER INPUT CARD FORMAT

Columns	Description	Field Format
1-2	Total Number of Transmitters (50 maximum)	Integer
6-7	Total Number of Receivers (50 maximum)	Integer
11-17	Frame Number of Nose Bulkhead	Floating Point
21-27	Radius of Nose Bulkhead in feet	Floating Point

The first two items are self-explanatory. These numbers enable the computer to determine how many possible interactions it must examine before the problem is completed.

The frame number and radius of the bulkhead are used to enable a calculation of the expected knife-edge losses along those paths which traverse the obstruction created by the bulkhead as explained in Section 3.

Transmitter Data Cards

The formats of the two transmitter data cards are shown in TABLE 4-2.

TABLE 4-2 TRANSMITTER DATA CARD FORMATS

Card 1

Columns	Description	Field Format
1-2	Antenna Number	Alpha-Numeric
3-12	Descriptive Code	Alpha-Numeric
14-21	Lower Operating Frequency (MHz)	Floating Point
23-30	Upper Operating Frequency (MHz)	"
32-37	Primary Bandwidth (kHz)	"
39-44	Secondary Bandwidth (kHz)	"
46-49	First Spectrum Slope Falloff (dB/decade)	"
51-54	Second Spectrum Slope Falloff (dB/decade)	"
56-58	Transmitter Power (dBm)	"
60-63	Antenna Gain (dBi)	"
65-67	Modulation Type	Alpha-Numeric
69	Pulse Compression Indicator (C=Chirped, otherwise blank)	"
71-74	Pulsewidth (μs)	Floating Point
76-79	Pulse Rise Time (μs)	"
Card 2		
1-6	Lower Filter Limit (MHz)	Floating Point
8-13	Upper Filter Limit (MHz)	"
15-20	Frame Number of Antenna	"
22-26	Antenna Height in Feet	"
28-31	Antenna Angle (degrees)	"
33	Raised Antenna Indicator (0=No; 1=Yes)	Integer
35	Number of Harmonics to be Examined (1-9)	Integer
37-40	Suppression Level of Second Harmonic (dB)	Floating Point

TABLE 4-2 (Cont.)

Card 2

Columns	Description	Field Format
42-45	Suppression Level of Third Harmonic (dB)	Floating Point
47-50	Suppression of Fourth Harmonic (dB)	"
52-55	Suppression Level of Fifth Harmonic (dB)	"
57-70	Suppression Level of Sixth Harmonic (dB)	"
62-65	Suppression Level of Seventh Harmonic (dB)	"
67-7 0	Suppression Level of Eighth Harmonic (dB)	"
72-75	Suppression Level of Ninth Harmonic (dB)	"

The antenna number is used as an identifier for the transmitter and its associated antenna. These two columns are used by the program to identify transmitter-receiver common equipment. It is intended, therefore, that these columns be used as an antenna identifier so that when the program selects the receiver using the same antenna for examination, it realizes that a transceiver is involved and does no calculation for that particular equipment pair. Columns 3-12 can be used as any description code associated with the transmitter. As an illustration, consider the following pair of descriptions:

11 UHF XMTR 11 UHF RCVR

As is evident, the two descriptions are intended to identify a UHF transceiver connected to antenna number 11. As the program examined transmitter-receiver pairs for possible interactions, it would recognize these descriptions as components of the same system because the characters in the first two columns are identical. The program would, accordingly, skip this calculation. It is important, therefore, that the antenna associated with any transceiver be given the same number to prevent an unfounded determination of potential interference.

The next two items, the lower and upper operating frequencies, are used to describe a transmitter capable of being tuned over a range of operating frequencies. When this situation occurs, the program synthesizes the spectral characteristics of the transmitter and then examines the potential interference from the transmitter over its entire range of operating frequencies. When a specific operating frequency is appropriate, these two fields should be completed identically with the known operating frequency. When more than one specific frequency must be examined, but a continuous tuning range is inappropriate, a separate set of

transmitter data cards should be included for each operating frequency.

The next four items, the bandwidths and slope characteristics, are explained in Section 3, where the primary bandwidth is B_1T , the secondary bandwidth is B_2T , and the first and second slope fall-offs are M_1 and M_2 , respectively. The transmitter power in dBm and the antenna gain in dBi were discussed previously.

The required modulation indicators are the standard designators; A3, F3, P0, P9, etc., and are used to enable the program to calculate the expected peak interfering signal when appropriate. The important designators are the pulse designators as explained in Section 3.

The pulse compression indicator column is left blank unless the transmitter uses frequency modulation during the pulse duration. If the transmitter is chirped, the letter "C" is used in the column.

The pulse characteristics, width and rise time, are self-explanatory.

The lower and upper filter limits are used to truncate the spectral energy of the transmitted emissions. When these values are submitted, the program assumes that the filter has an infinite slope outside the region described by the limits. The primary application for these data is to describe waveguide cut-off phenomena.

The geometric parameters describing the antenna placement on the airframe are used to determine the coupling losses. The frame number, which corresponds to a Z-axis coordinate in inches, and the antenna angle, which corresponds to a φ coordinate in degrees using the upper fuselage centerline as a reference, enable the ray path length and curvature loss factor to be determined.

The antenna height in feet corresponds to the distance of the antenna from the centroidal axis of the airframe. In the case of an antenna which is surface mounted on the fuselage, this parameter represents the radius of the airframe at the corresponding frame number.

The raised antenna indicator is used to identify those antennas which are not surface mounted on the fuselage. For example, the VOR/ILS antennas on the vertical stabilizer are raised antennas. This enables the program to determine the free-space portion of the transmission path between a surface mounted antenna and a raised antenna. In doing so, the model assumes that the airframe is cylindrical with a radius equal to the height of the surface mounted antenna.

The user may select the number of harmonic emissions to be examined during the analysis. If the number 1 is specified, only the fundamental emission spectrum is modeled. If the number is greater than one, then each harmonic is synthesized in a manner identical to the fundamental emission, except that the beginning level is suppressed by the amount specified by the user for each harmonic in the fields designated above.

Receiver Data Cards

The formats of the two receiver data cards are shown in TABLE 4-3.

TABLE 4-3
RECEIVER DATA CARD FORMATS

Card 1

1-2 Antenna Number Alpha-Numeric 3-12 Descriptive Code Alpha-Numeric 14-21 Lower Operating Frequency (MHz) Floating Point 23-30 Upper Operating Frequency (MHz) " 32-37 IF Bandwidth (kHz) "
14-21 Lower Operating Frequency (MHz) Floating Po int 23-30 Upper Operating Frequency (MHz) "
23-30 Upper Operating Frequency (MHz) "
23-30 Opper Operating Frequency (WHz)
32-37 IF Bandwidth (kHz) "
39-42 IF Frequency (MHz) "
44-47 IF Selectivity Slope (dB/decade) "
49-52 RF Selectivity Slope (dB/decade) "
54-56 Image Rejection (dB) "
58-60 Spurious Response Rejection (dB) "
62-69 Lower Spurious Response Limit (MHz) "
71-78 Upper Spurious Response Limit (MHz) "
80 Local Oscillator position (A=above; B=Below) Alpha-Numeric
Card 2
1-6 Frame number of antenna Floating Point
8-12 Antenna Height in Feet "
14-17 Antenna Angle in degrees "
19 Raised Antenna Indicator (O=No; 1=Yes) Integer
21-25 Receiver Sensitivity (dBm) Floating Point
27-30 Antenna Gain (dBi) "
32-35 Degradation Threshold (S/I) ratio (dB) "

Many of the items in the receiver card fields are either identical to or analogous to the items contained in the transmitter card fields and, accordingly, need no further explanation. However, a discussion of the treatment of the spurious responses will be given.

The amplitude characteristic of the image response of the receiver is synthesized in a manner identical to the fundamental response characteristic except that the designated image rejection is used to weight this characteristic. The frequency range of consideration for the image response depends on whether the local oscillator injection frequency is higher or lower than the receiver tuned frequency (See Equation 3-19). In some receivers, the injection frequency can be higher or lower, depending on the segment of its operating range in which the receiver is tuned. For example, the intermediate frequency of the TACAN receivers is 63 MHz. The local oscillator injection signal is derived from the associated transmitter signal. When the receiver operates between 962-1024 MHz, the local oscillator frequency lies above the tuned frequency. When the receiver is tuned between 1151-1213 MHz, the oscillator frequency lies below the tuned frequency.

When this situation arises, the receiver should be treated as two separate receivers, one for each portion of its operating band.

As mentioned in Section 3, the frequency limits for consideration of spurious responses are specified as discrete frequencies rather than difference frequencies from the receiver tuned frequency. In a simplified first level analysis, these limits should be chosen to encompass the expected range of spurious responses over the entire operating range of the receiver. For a more refined analysis involving specific operating frequencies, only the frequency limits appropriate to those operating frequencies should be specified. Note that the specification of the spurious response frequency limits in terms of discrete frequencies allows these limits to be assymetrical about the tuned frequency. Examination of Equations (3-20a and 3-20b) shows that the most sensitive spurious responses usually are found at frequencies below the tuned frequency when the local oscillator injection frequency lies below the tuned frequency and are found at frequencies above the tuned frequency when the converse is true. Thus, the specification of the limits of the spurious response frequencies in this manner provides a simple, yet flexible, method for enabling different levels of refinement in the analysis.

Output Formats

The output of the computer program contains a listing of the input data and the result of the analyses. A partial output listing is shown in Figure 4-1. Note that the listing of the input data for the transmitters and receivers is presented in the exact order required on the input cards previously discussed.

Figure 4-1. Typical Output Data.

US TALZOELUM / / / / / / / / / / / / / / / / / / /
UHF Curi , and ATC XPNIDR

The analysis results are presented in terms of equation (3-5). Each of the columns is self-explanatory except for the remarks column, which is discussed below. The first set of listings shown are those transmitter-receiver combinations for which potential interactions are predicted. For each potential interfering transmitter, all of the potential victim receivers are shown with the computed value of each term in the expression.

After all of the potential interactions have been listed, those transmitter-receiver combinations for which no interference is expected are shown with the computed values of the terms in the expression. This listing contains those equipment combinations which require no further examination.

At the end of the list containing the "culled," i.e., eliminated, combinations, a matrix is provided which summarizes the expected transmitter - receiver pairs for which potential interference is predicted. This matrix is provided only as a convenient qualitative quick-reference for the analyst.

The remarks column contains special notations which are relevant to the analyses. Five remarks are possible, as discussed below:

Curvature Range Exceeded

This remark indicates that the portion of the path loss due to the curvature along the path exceeds 100 dB, the upper limit predicted for the curvature factor. When this situation occurs, the model assumes that the curvature factor is 100 dB and proceeds with the computation.

Frequency is Too Low

As explained in Section 3, when the operating frequency is too low, the assumptions used in developing the path loss model may become invalid. When such a situation arises, the program makes no computation and a manual analysis is required. The present lower limit used in the analysis is 30 MHz.

Antennas Are Too Close

When two antennas are too close to enable a calculation of path loss, the program assumes that the loss is 0 dB. It then examines the transmitter receiver pair involved based on the remaining parameters and either retains or eliminates the comination on this basis. An example of this arises with the antenna on the Sabreliner which is shared by a VHF transceiver and the UHF transceiver.

H = 2, 3, 4...9

When the worst case interaction has been determined to be due to a harmonic emission rather than the fundamental emission of a transmitter, the interfering harmonic is noted.

$L_k = X dB$

This remark indicates that the path between the transmitter-receiver pair being examined involved a knife-edge obstruction due to the nose bulkhead. The amount of additional loss which has been automatically included in the path loss computation is noted for information purposes.

Suggested Operating Procedures

This discussion contains the suggested procedures to be followed during an analysis to enable successive levels of refinement with a minimum of manual computation.

First Level Analysis

The first level analysis is intended to eliminate from further consideration those combinations of equipments which are not expected to result in interactions under any operating conditions. During this phase, the full tuning range of the equipments should be used as input parameters, the specified receiver spurious response limits should encompass all of the potentially susceptible frequencies over the tuning ranges, the minimum spurious response rejection should be used, and the specified degradation threshold should indicate the maximum required S/I ratio for the receiver involved. At the completion of this phase, the equipment combinations satisfying the following conditions will be retained for further attention:

- 1. Equipments with overlapping or immediately adjacent operating frequency ranges.
- 2. Equipments with harmonically related operating frequency ranges for which the harmonic attenuation offered by the transmitter is inadequate to preclude interference.

As an illustration of representative results of this level of analysis, a typical problem was solved on the computer for the Sabreliner aircraft. The analysis consisted of evaluating the potential interactions between 11 transmitters and 21 receivers. One reason for the large number of receivers is that each TACAN receiver can operate in one of two split frequency ranges utilizing one of two alternate antennas. Accordingly, the two TACAN receivers required 8 sets of data cards for an adequate description.

With this equipment complement, there were 207 possible interactions to be considered. The first level analysis described above identified 40 potential interactions requiring further examination and eliminated the remaining 167 possible situations. The running time for the computer was 25 seconds.

It should be noted that, since the program does not presently consider the polarization mismatch loss as explained in Section 3, this factor should be included manually at the completion of the automated first level analysis. This may result in additional equipment pairs being eliminated.

Second Level Analysis

The transmitter-receiver pairs retained as potential problems after the first level analysis can be subjected to a more refined study to determine the expected mutual effects. Two approaches to the second level analysis are possible, depending on whether the actual equipment operating frequencies are known.

If the actual operating frequencies are not known, then the second level analysis can provide information relating to required frequency separations which preclude degrading interference interactions. In order to make this type of determination, each transmitter, and the receiver for which it is a potential source, is submitted as a separate problem.

When the input data cards are prepared for the transmitter, they are completed exactly as was done in the first level analyses, except that several combinations of discrete operating frequencies are used. Several sets of cards are prepared for the transmitter, each with a difference in operating frequency equal to the appropriate channel separation. For example, the data cards for the VHF communications transmitters would have operating frequencies separated by 50 kilohertz. The user should be careful to modify the transmitter description (Col. 3 to 12) slightly for each operating frequency so that the output results can be correlated properly.

The input data cards for the potential victim receivers are also modified slightly for the second level analyses. One set of data cards is required for each receiver. In this instance, however, the input discrete operating frequency is specified at either the upper, or lower, frequency within the operating range of the receiver. In addition, the limiting frequencies at which spurious responses are a potential problem are modified to reflect the expected receiver susceptibility to this interference mechanism at the discrete operating frequency specified as an input. If desired, these spurious response limits may be specified to reflect the assymetry noted previously. If this is done the operating frequency should be specified at the upper

end of the operating-range if the local oscillator operates below the tuned frequency, and vice versa, in order to insure that this type of interaction is given proper consideration.

In other words, each combination of transmitters and receivers retained as potential interference problems by the first level analysis is further evaluated in the second level analysis by sequentially studying the reduction in the expected effects as the difference between the equipment operating frequencies is increased.

This level of analysis can be expected to enable removal from further consideration the interactions expected due to harmonically related equipment operating frequencies and those interactions involving equipments with immediately adjacent operating frequency ranges for which no spurious responses can be expected under worst case conditions. Of course, the required frequency separations resulting from this level of analysis must be respected to preclude these interactions.

If the respective operating frequencies are known, the input data can be submitted to reflect these frequency relationships and the results obtained will reflect this situation also. This raises the immediate question concerning the need for a two-level analysis if the actual operating frequencies are known. The response to the question is that there is, in fact, no need for the first level analysis if the operating frequencies are known, provided, of course, that these frequencies will never be changed.

The first level analysis will eliminate from further consideration, including future considerations, those equipment combinations for which interactions are not expected under any possible assignment of operating frequencies. The generalized second level analysis will provide frequency assignment guidelines which will preclude undesirable interactions under any assignment of frequencies provided the guidelines are met.

The particular analysis based on specific operating frequencies provides results which may be applicable only to the set of operating frequencies submitted at the time.

Thus, it is recommended that specific operating frequencies be submitted on inputs only after two levels of generalized analysis have been accomplished and generalized conclusions have resulted.

Third Level Analysis

The equipment combinations expected to be retained as potential interference problems after the second level analysis are those sharing the same or immediately adjacent operating

frequency ranges for which the path loss is inadequate to preclude spurious response interference interactions with an acceptable or realizable separation in the equipment tuned frequencies.

Other non-linear effects, such as cross modulation, desensitization, and intermodulation must also be considered during this level of analysis. The latter non-linear effects can be omitted from the first two levels of effort since they do not arise between avionics equipments operating in widely separated frequency bands.

Because of the detailed nature of the analysis required for responsible conclusions pertaining to non-linear effects, the third level of analyses is necessarily accomplished manually. In performing this type of study, due consideration must be given to the receiver detection process and nature of the potential interfering signal in order that the degradation threshold may be adjusted along with the frequency relationships discussed previously.

If examination of potential interactions due to receiver spurious responses is required, the receiver must be modeled to reflect each individual response for which the path loss is inadequate to preclude a degrading interaction. This modeling is accomplished by rearranging equation (3-5) to provide for a solution of the frequency rejection term, L_f required to preclude degradation, and then determining the appropriate value of spurious response rejection, K_s , using the procedures set forth in SECTION 3. In this instance, L_f and K_s are identical factors.

The expected occurrence of degradation due to cross modulation and desensitization can be estimated by assuming that the receiver input on-tune susceptibility for this phenomenon is $-20\,$ dBm. The effective rejection of the receiver to this phenomenon is determined by calculating the selectivity characteristic of the first RF amplifier. This characteristic can be calculated using the methods described in SECTION 3, but it must be emphasized that only the tuned circuits associated with the input and output of the first RF amplifier should be used in determining this selectivity characteristic.

Interference due to intermodulation can be ignored on most airplanes. Degradation in avionics equipment due to this phenomenon requires the simultaneous operation of at least two transmitters and one receiver in the same operating frequency range.

Additional Applications

The model presented herein can be used to determine the expected effects of future equipment installations as well as the effects of existing complements on any airframe. This is

accomplished by the following sequence:

 Prepare input data cards describing the proposed equipment using the most operationally desirable location on the airframe to determine the required geometrical parameters.

- 2. Perform two levels of analysis as discussed herein.
- 3. If necessary, perform a third level analysis to determine the maximum frequency rejection that can be expected between the potentially troublesome equipment combinations.
- 4. Solve equation (3-5), using this maximum frequency rejection, to determine the path loss required for compatible operations.
- 5. Perform an analysis using the optimum frequency dependent input parameters as constants and varying the proposed location to determine the expected path losses.
- 6. Decide on the operational practicality and suitability of the proposed system when the maximum expected path loss is determined.

SECTION 5

SABRELINER EMC EVALUATION

Introduction

The entire avionics complement on the Sabreliner was subjected to three levels of analysis as described in SECTION 4 of this report. In addition to the existing equipments, a proposed VHF SATCOM terminal was evaluated, although the evaluation of this installation was not made until the third level of analysis.

First Level Analysis Results

The input data used for the first level analysis are shown in APPENDIX V. The results of this analysis are shown in the form of a matrix in TABLE 5-1. Those equipment combinations denoted by an "X" in this table were retained as potential interference problems. The combinations denoted by a blank space were eliminated from further consideration. Each of the equipments involved may be identified by referring to Figure 3-1 and TABLE 3-2.

TABLE 5-1
FIRST LEVEL ANALYSIS RESULTS

Transmitter Receiver Antenna Number															
Antenna No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1. Weather Radar															
3. TACAN-2				×			X					×			
4. ATC			X		X		X					X			
5. TACAN-2				X			X					X			
6. VHF Comm.						×		X					X	×	X
6. UHF Comm.		×													
7. TACAN-1			X	X	X										
8. VHF Comm.						×							X	×	×
9. Doppler															
11. Altimeter															
12. TACAN-1			×	×	×										

Second Level Analysis Results

A second level analysis was performed as described in SECTION 4. Because of the relatively

small size of the Sabreliner, and the concomitantly small coupling losses, the only equipment combinations eliminated were the VHF communications transmitters and the UHF communications and UHF direction finding receivers. These equipments were eliminated as interference situations as soon as the harmonic relationship between the respective operating frequencies no longer existed. The equipment combinations remaining after this level of analysis were:

- 1. TACAN versus the ATC transponder.
- 2. TACAN transmitters versus the TACAN receivers.
- 3. VHF Communications Transmitters versus VHF Communications receivers.
- 4. VHF Communications Transmitters versus VHF navigation receivers.
- 5. The UHF Communications Transmitter versus the Glide Slope receivers.

Third Level Analysis Results

Each of the Sabreliner equipment combinations retained after the second level analysis was subjected to a detailed manual analysis to establish the frequency separations required to preclude degrading interference. In addition, the expected mutual effects due to the installation of a VHF Satellite Communications (SATCOM) terminal were determined during this phase of the study. These predictions are based on nominal equipment characteristics as published by the manufacturers involved rather than measured characteristics obtained from an adequate sampling of the equipment. Because of this, some variation from the predicted results can be expected during actual operations. Further, operational considerations have not, in general, been considered. Such considerations could affect the frequency of observation of the predicted effects.

TACAN Transmitter Effects on the ATC Transponder

The TACAN transmitted pulses will not result in degrading interference to the ATC Transponder receiver because blanking pulses are provided by the TACAN equipment which disable the transponder for the period of each TACAN transmission. If this were not the case, serious effects could be expected, since the input interfering signals from the TACAN, which can reach a peak level as high as 32 dBm, might result in damage to the input circuitry of the transponder receiver as well as interference due to spurious responses and adjacent channel effects. Further, interference due to TACAN interpulse CW is not expected, since the TACAN local oscillator signal is prevented from reaching the transmitter power amplifiers by a diode switching circuit.

ATC Transponder Effects on the TACAN Receiver

The TACAN receivers have a Yttrium Iron Garnet (YIG) input filter which limits all

input signals to a maximum level of 10 dBm, thereby precluding any high power interference effects in these receivers. However, the determination of the interactions which are to be expected between these equipments is beyond the scope of this study, for the following reasons:

- 1. Each TACAN receiver operates in conjunction with two antennas. The antennas are alternately switched into the receiving system to insure that the best quality signal is obtained. Thus, the effect of an interfering signal impinging on the antennas depends on which antenna is in use and the time relationships between the interfering signal, the desired signal, and the antenna switching doctrine.
- 2. The detection circuitry in the TACAN receivers is such that when a pulsed signal is received and recognized, a timing circuit is enabled, which counts for twelve microseconds, nominally. At the end of this period of time, a gate is enabled. If a second pulsed signal is recognized during the interval in which the gate is enabled, an output is provided; otherwise, the receiver ignores the first pulse and no output results. Thus, the effect of a pulsed interfering signal on the TACAN receiver depends on the interpulse spacing of the interference, and the time relationship between reception of the interfering pulses and the desired TACAN pulses.
- 3. The ATC Transponder emissions consist of a coded train of pulses. A total of 4096 different codes is possible, of which 64 selected codes are presently used. The spectral characteristics of the emissions, and the resulting effects on the TACAN receivers will change as different codes are used. For example, if a 7777 or a 7700 transponder code is used, the pulse train duty cycle will be 0.5 and 0.25, respectively. Under these conditions, the TACAN receiver will achieve a steady state response during the pulse train and no second pulse will be detected during the gate interval. If a 1311 or 0100 code is used, an interval of approximately 12 microseconds will exist between certain of the pulses in the train and an erroneous output is possible, depending on the time relationships between the interfering pulse train and the reception time of the desired TACAN pulses.
- 4. Each individual ATC Transponder pulse has a duration of 0.45 microseconds, a rise time between 50 and 100 nanoseconds, and a fall time between 50 and 200 nanoseconds. Although 50 nanosecond rise and fall times represent the design goals and the expected capabilities of the equipment, the maintenance procedures provide for go-no go acceptance criteria of 100 nanoseconds and 200 nanoseconds for the rise and fall times, respectively. Further, it should be noted that in spite of the generation of the pulses in the modulator as trapezoidal pulses, the output of the transmitter RF stage is taken from a cavity resonator, which will tend to shape the output pulses. It can be shown that the spectral characteristics of the output pulses change sufficiently as these parameters are varied to enable either a conclusion that interference to TACAN could result, if the appropriate codes were used at all possible frequency separations, or a conclusion that no interference would result at the

minimum separation (approximately 60 MHz) under any of the possible codes.

Accordingly, an extensive, statistical effort would be required to make estimates of the expected effects of the Transponder on the TACAN receivers. Since such a study was not a goal of this effort, it will suffice to state qualitatively that degradation to the TACAN receivers as a result of the transponder emissions is possible but not probable.

Mutual Effects Between TACAN Systems

The expected mutual effects between the TACAN systems on the Sabreliner are nearly as difficult to determine as the effects due to the ATC Transponder, because of the technique employed to switch the antennas associated with each equipment. One significant difference to be considered, however, is that the TACAN transmitters emit a signal which will always satisfy the TACAN detection criteria. Therefore, a worst case determination was possible and it was found that degrading interference could result due to the sideband energy of one system transmitter occurring within the LF passband of the second systems receiver, unless the separation in the respective tuned frequencies is greater than 9 MHz. Further, interference may also result when the transmitting frequency of one TACAN system falls on the image frequency of the other system receiver. The image frequency of a TACAN receiver is located 126 MHz above or below the receiver tuned frequency, depending on whether the receiver is operating in the lower or upper portions, respectively, of its overall tuning range. If the output pulses of the transmitters were synchronized in time, no degradation would ever occur since the receiver would not be operative when the impinging undesired signals arrived.

Mutual Interactions Between the VHF Communications Equipments

The communications receivers were modeled as previously described and the expected effects due to the transmitters were determined. Mutual interference between the VHF systems can be expected if the frequency separation between the systems is less than 1.8 MHz.

The interference will be caused by the spectral energy contained in the noise sidebands of the transmitter which fall within the receiver passband. The degradation threshold used to evaluate this effect was 10 dB. This threshold was used because the interference signal will appear as noise to the receiver. The emission characteristics of the transmitter were modeled in the manner described in SECTION 3.

VHF Communications Transmitter Effects in the VHF Navigation Receivers

The noise sidebands of the VHF communications transmitters will result in degrading

interference to the VOR/ILS receivers if the frequency separation between these equipments is less than 0.3 MHz. The interaction will arise in the same manner described above. Since the interfering signal appears as noise to the receiver, a degradation threshold of 10 dB was used.

Effects of the UHF Transmitter on the Glide Slope Receivers

The emissions from the UHF communications transmitter can result in degrading interference to the Glide Slope receivers by exciting a spurious response in the receiver, and by exciting a response within the receiver passband due to the transmitter noise sidebands. The spurious responses which could arise include the receiver image response and the response which arises when the frequency separation is one-half of the intermediate frequency (p = q = 2 in equation 3-20b). These potential spurious interference situations can be precluded by insuring that the UHF transmitter is not tuned 102.4 MHz ± 60 kHz, or 25.6 MHz ± 50 kHz below the tuned frequency of the Glide Slope receiver. Degrading interference due to the noise sidebands of the transmitter can be avoided if the separation between the tuned frequencies of the equipments is 0.6 MHz or greater.

Expected Effects of Future VHF SATCOM Terminal

Since the detailed characteristics of the equipment to be used for future voice communications using a satellite are not fully known, certain assumptions had to be made to enable an evaluation of the impact of such a terminal. These are:

- 1. The SATCOM receiver characteristics were assumed to be identical to those of the existing Sabreliner VHF communications receivers, except that the sensitivity has been increased to 111 dBm, rather than —97 dBm, in accordance with ARINC characteristic 566.
- 2. The SATCOM transmitter terminal was assumed to have identical characteristics compared to the existing VHF transmitters, except that the output power will be 500 watts.
- 3. The SATCOM antenna will be circularly polarized with 0 dBi gain as set forth in ARINC Characteristic 566 and will be located on the top centerline of the Sabreliner fuselage approximately at Frame Number 135.
- 4. The VHF SATCOM terminal will never be used simultaneously with the existing VHF communications system whose antenna is installed on the top centerline at Frame Number 168 i.e., the use of both of these systems is assumed to be mutually exclusive.

Based on these assumptions, it was found that the proposed SATCOM Terminal would result in degrading interference to the VHF navigation receivers and in mutual interference with the VHF communications system located on the bottom centerline at Frame Number

135. In each instance the interference effects will result from the noise sidebands of the transmitters involved. Degradation in the VHF navigation receivers can be avoided if the SATCOM transmitter frequency is separated by at least 15 MHz from the receiver tuned frequencies, i.e., no degradation will result if the SATCOM frequency is above 133 MHz.

Mutual interference between the VHF communications systems can be precluded if the frequency separation between the respective tuned frequencies is at least 4.2 MHz. It should be noted that this restriction is applicable in both directions. The existing VHF communications transceiver has a transmitter output power of 25 watts and a receiver sensitivity of $-97 \, \text{dBm}$. The proposed SATCOM equipment has a transmitter power of 500 watts and a receiver sensitivity of $-111 \, \text{dBm}$. Thus, the difference in transmitter powers of 13 dB virtually offsets the difference in receiver sensitivities (14 dB) for interference calculations.

No other interference is expected provided that harmonic relationships between the operating frequencies of the SATCOM system and the remaining receiving systems on board are avoided when making frequency assignments.

SECTION 6

MODEL EXPANSION POSSIBILITIES

General

As stated previously, the development of the prediction model in the form of an expression has resulted in an inherent modular characteristic which is amenable to expansion and modification. This section will provide a discussion of possible improvements and the methods viewed as providing promise toward realization of a full prediction model.

Antenna Gain Calculator

First, it was mentioned in SECTION 3 that an antenna gain subroutine could be developed which would calculate the gain expected from any antenna on the aircraft. This parameter is currently obtained from manufacturers information or, in the case of aperture antennas, modeled theoretically using manual techniques. Both of these methods could be accomplished by automating the expressions used by an engineer to provide the input data required herein. In addition, the required information could be converted into a statistical parameter by obtaining sufficient information to confidently predict the expected variations in antenna characteristics due to different manufacturers, different antenna types, different aperture sizes and different scanning principles, as appropriate, between antennas performing the same functional mission. A probabilistic representation of antenna gains would also be more meaningful for considerations involving aircraft-to-aircraft or aircraft-to-ground environment problems where perturbations in antenna gain could be expected due to irregularities in airframe geometry, and scanning principles versus aircraft or ground equipment orientation and location.

Improvement In Coupling Loss Predictions

A second area of possible expansion involves improvement of the path loss prediction to include the expected range of errors involved in the theoretical calculations. As mentioned in SECTION 3, the errors experienced between previous predictions and actual observations can be expressed statistically. Further, it is suggested herein that the coupling losses predicted between Sabreliner equipments be verified and reported to the ECAC. When this has been accomplished, the observed variations should be used to improve the prediction model using statistical techniques.

Input Preprocessor

As indicated in SECTION 3, the model can also be expanded and improved by development of an automatic pre-processor which will minimize the number of required input data as well as the effort required to obtain them. This approach will be mandatory if the model is expanded to enable consideration of an aircraft-to-ground environment prediction process. The most extensive environmental data base known to exist in the world is maintained by the ECAC, but the format of these files is not immediately amenable to a realistic solution of this type of problem without a buffering pre-processor as contemplated herein. This pre-processor could also be developed to reflect expected variations in statistical terms, although the time required to describe the ground equipments in this manner would be substantial.

Statistical Prediction Model

The remaining parameters shown in Equation (3-5), which are largely input parameters describing equipment performance, could be expressed statistically by determining the variations expected among equipments used for the same functions on different airframes as supplied by different manufacturers. The development of such a variational representation would require interchanges of information between the developer and airframe manufacturers, airline users, equipment manufacturers, and the military services, or an agency familiar with military equipment installation, performance, and operation, such as ECAC.

Suggested Improvement Sequence

A sequential improvement and expansion program is suggested herein. Certain of the steps could be accomplished simultaneously. The steps indicated follow a sequence which is convenient, without regard to operational necessities. They are:

- 1. Develop an input pre-processor for the existing model using deterministic expressions, which will minimize the number of required input parameters.
- 2. Develop an antenna gain subroutine which includes a calculation of expected gain and polarization mismatches, and results in an effective mutual gain calculation between antennas on an airframe.
- 3. Expand the coupling loss subroutine to reflect the distribution of expected errors, including the errors previously observed as well as those observed by FAA when verifying the predictions reported herein.
- 4. Expand this overall model to incorporate different coupling loss models and expand the prediction capability to enable estimates of interactions in an aircraft-to-environment (both airborne and ground) situation.
- 5. Convert the prediction techniques to enable calculations in probabilistic terms.

APPENDIX I

COUPLING LOSS SUBROUTINE

This Appendix contains the flow diagram and program listing for the subroutine used to compute the expected path loss between two antennas on an airframe. The flow chart is shown in Figure I-1. The program listing, which is written in the FORTRAN V language, is shown in Figure I-2.

ESD-TR-70-286 Appendix I

Figure I-1. Coupling Loss Subroutine Flow Diagram.

Figure I-1. (Continued) 1-3

Figure I-1. (Continued)

Figure I-1. (Continued)

ENTRY PUINT UDIOUL

SUBKOUTINE CLOSS

STORAGE USED (BLOCK, NAME, LENGTH)

0000000

*CODE *DATA *BLANK CLCOMM

00000

EXTERNAL REFERENCES (BLOCK+ NAME)

INTRUPCOS SORT ALGGIU ACGS NERR63

00004 00005 00007 00010 0011

0001 000741 125L 0001 000745 130L 0001 000735 134L 0003 H 000003 AMGLE 0003 H 000011 GURY 0000 H 000055 DMAX 0000 H 000052 PP 0000 H 000052 PP 0000 H 000052 PP COMMON/CLCUMM/FREQ.DISTI.DIST2.A;GLE(2).ANIHT1.ANIHT2.PANT(2). BDIST.BHT.BULK.C.WV.FREE.TOTAL.ERK 0001 000561 120L 0001 000760 129L 0001 0000760 132L 0000 K 000053 A 0000 K 000005 B 0000 K 000002 DIST2 0000 K 000000 FRE9 0000 K 000000 MRSEP 0000 K 000000 MRSEP 0000 K 000000 MRSEP DISTZ FREG MHSEP KANT 0001 000534 110L 0001 000553 128L 0001 000412 2536 0001 000412 2536 0003 R 000000 ANTHT2 0003 R 000012 C 0000 R 000012 C 0000 I 000001 18 0000 R 00004 / ADIAN 0000 R 00004 / ADIAN 0000 R 00010 XB MEAL MMSEP DIMENSION T(19), PM(19) UATA HADIAN/57-295779/ SUBROUTINE CLOSS INTEGER RANTIERR 0001 000520 100L 0001 000520 127L 0001 00050 140L 0001 00050 24L 0003 R 000013 ANTHTI 0003 R 000013 BULK 0000 R 000012 BULK 0000 R 000012 EKR 0000 R 000012 FW 0000 R 000014 KZ

400 t c c c

00103 00103 00104 00104 00105

Figure 1-2. Coupling Loss Subroutine Listing. (page I of 4)

STOMAGE ASSIGNMENT FOR VAMIABLES (BLOCK, TIPE, RELATIVE LOCATION, NAME)

UUDUIS MI UUDUIS LAXIS 950000 00000

```
DATA Y / 010-20 030.50-70100 2003.0500 70010001500 12000 2500 3000 4000 45005000 1000 / DATA PM / 020-40060 10010-30 10903-9050709-4012-9017050 12505032-30390 045005/00 62050670501000 /
00111
00111
            98
00113
           10=
00113
           11*
           12*
00115
                           FUNCT(W)=10.*ALOG10(.0001635+W)
           13*
                           CALL INTRUP(0)
BULK=0.
00116
           14*
00117
00120
           15*
                           CURV=0.
00121
           16*
                           FREE=0.
00122
           17*
                           TOTAL=0
00123
           148
                           1F (FREQ.LT.30.)60 TO 152
           19*
00125
                           ERRE1
           20*
                           00 30 I=1.2
00126
00131
           21*
                           ANGLE(I) = AMOD (ANGLE(1) + 360 .)
                           1F (ANGLE(1))10:30:20
00132
           22*
00135
           25*
                       10 ANGLE(1)=ANGLE(1)+360.
00136
           244
                       20 1F (RANT (1) . EQ. 1) 60 TU 130
00140
           25*
                       30 CONTINUE
                           ZAXIS=ABS(DIST1=DIST2)
ANGLOC=ABS(ANGLE(1)=ANGLE(2))
           26*
00142
00142
00143
00144
           270
           284
                           1F (ANGLOC. 6T. 180) ANGLOC=360. - ANGLOC
00146
            29*
                           1F (BOIST+BHT)8+8
           30*
                           DMIN=AMINI (OISTI +OIS)2)
00151
                           OMAX=AMAX1(DIST1+DIST2)
1F(BDIST+LT+DMIN)GO (0 8
           31*
00152
           32*
00153
00155
           33*
                           IF (BOIST - GT - DMAX) GO TO 8
00155
           34=
           35*
                   ...
                           BULKHEAD CASE
00155
           36*
00155
00157
           37*
                           PHI=COS(ANGLOC/RADIAN)
00160
           38*
                           BEANTHT1 + + 2 + ANTHT2 + + < - 2 . + ANTHT1 + ANIHT2 + PHI
00161
           39*
                           KMIN=AMINI (ANTHT1 + ANTHT2)
00162
           40*
                           1F (BHT-RMIN)154
00165
           41*
                           D=DIST1
           42*
                           1F (ANTHT2.LT.ANTHT1)U=015T2
00106
                          H=SQRT(BHT002+KMIN002-22.0BHT0RM1N0PHI)

--SQRT(BHT002+KMIN002-2.0BHT0RM1N0PHI)

--SQRT(B)0ABS((BDIST-0)/ZAXIS)

D=AMIN1(ABS(BDIST-01>T1)/ABS(BO1ST-D1S12))
00170
           4.5*
           44=
00170
00171
           45=
00172
           46=
                           BULK=10. *ALOG1U(H+H++ REQ/2U./D)
00173
           47=
                           1F (BULK . LT . 6) BULK=6.
00175
            48*
                           FREE=FUNCT(FREQ++2+(ZAXIS++2+B))
00176
            49=
                           60 TO 151
            50*
00176
00176
            51*
                           NO BULKHEAD INTERFERES
00176
00177
            52*
                   C
            53*
                         8 1F (RANT(1)+RANT(2)=1/110+40+100
           54=
00177
           55*
00177
                   L**
                           ONE ANTENNA RAISED, UNE ON AIRFRAME.
00177
            56=
                   L
            57=
                       40 1F (RANT (1) .EQ.1)60 TU 50
00202
            58*
                           H=ANTHT2
00204
00205
            59*
                           A=ANTHT1
            60*
                           THETA1=ANGLE(1)
41=DIST1
00206
            61*
00207
            62*
                           42=DIST2
00210
```

Figure 1-2. Continued.

```
60 TO 55
00211
         65*
         64#
                   50 HEANTHTI
00212
00213
         65#
                       STHT/A=A
00214
          66#
                       THETA1=ANGLE (2)
00215
         67*
                       Z1=015T2
                   22=D1ST1
55 1F(THETA1)100,100,60
00216
         68*
         69*
00217
          70+
                   60 THETAP=ACOS (A/H)
00222
          71*
                       1F (THETA1.GT.180.) THETA1=360.-THETA1
00223
          72*
                       THE TAISTHETAL/RADIAN
00225
                       1F (THETA1-THETAP) 70 . / 0 . 80
          75*
00226
          74*
00226
                      LINE-OF-SIGHT FROM RAISED ANTENNA TO ONE ON BODY. COMPUTE DISTANCE.
                C++
          75*
00226
          76*
77*
00226
                C
                    70 MHSEP=SURT(ZAX1S++2+H+H-2++H+A+COS(THETA1)+A+A)
00231
          78*
                       60 TO 125
00232
          79*
00232
          80*
                C**
                       COMPUTE TOTAL DISTANCE FOR NON-LINE-OF-SIGHT CASE.
00232
          81*
00232
          82*
                    80 T=THETA1-THETAP
00253
                       ZP=(Z2+A+T+Z1+SQRT(H+H-A+A))/(A+T+SQRT(H+H-A+A))
          83*
00234
          84+
                       P=ABS(21-ZP)
00235
          85*
                       K1=SQRT (P*P+(A*T)**2)
00256
00237
          86*
                       PEARS (72-7F)
                       H2=SQRT(P*P+H*H-2.*H*A*COS(THETAP)+A*A)
          87*
00240
                       MHSEP=R1+H2
          88*
00241
00242
          89*
                       T=T+RADIAN
00243
          90*
                       60 TO 120
          91*
00243
                      LINE-OF SIGHT (ANGLE ZERO)
                C**
          92*
00243
          93*
00243
                1
          94#
                  100 MHSEP=SQRT(ZAX1S++2+(ANTHT1-ANTHT2)++2)
00244
00245
          95#
                       60 TO 125
00245
          96*
                       BOTH ON BODY, COMPUTE SEPARATION DISTANCE.
          97=
00245
                C**
          98*
00245
                  110 A=SQRT(ANTHT1*ANTHT2)
          99*
00246
                       MHSEP=SQRT(ZAX1S++2+\A+ANGLOC/RAD1AN)++2)
00247
         100*
00250
         101*
                       RI=MHSEP
         102*
                       T=ANGLOC
00251
                  120 1F (R1)140,140,122
         103*
00252
         104*
00252
         105*
                **
                       COMPUTE CURVATURE FACTOR AROUND BODY AND FIND LOSS.
00252
00252
         106*
00255
         107*
                   122 CFCURV=T*T*A*.000764*SQRT(FREQ/984*/R1)
                       1F(CFCURY.GT.100.)G0 TO 150
1F(CFCURY.LT..1)G0 TO 125
00256
         106*
00260
         109*
                  DO 126 1=2:19
126 1F(CFCURY.LT.Y(1))GO TO 127
00262
         110*
         111*
00265
         1120
                       RETURN 0
00270
         113*
                   12/ 1F(1.EQ.2)GO TO 129
         114*
                       1f (1.EQ.19)GO TO 128
00273
         115*
                       1F(Y(1)-Y(1-1)-2.*(CFCURV-Y(1-1)))129:129:128
00275
00300
         116*
                   128 1=1-1
                   129 U=Y(1+1)-Y(1)
         117*
00301
```

Figure I-2. Continued.

Figure I-2. Continued

					2/0																
B=1(1)-1(I-1)	C=Y(1+1)-Y(1-1)	XA=Y(I+1)-CFCURV	XB=Y(I)-CFCURV	XC=Y(1+1)-CFCURV	CURV =PM(I=1)=XB=XA/L/B-PM(I)=XA/D=XC/B+PM(I+1)=XB=XC/D/C	1F (MHSEP-LT31)60 TU 140	FREE=FUNCT((FKE@#MHSEP)##2)	TOTAL=BULK+CURV+FREE	60 TO 160		60 TO 16U		60 T0 160	EXK##	CURVE#100.	60 T0 125		60 T0 160	-	KE TURN	END
						125		131		130		140		150			152		154	160	
118*	119*	120*	121*	122*	123*	1240	125*	126*	127*	128*	129*	130*	131*	132*	133*	134.	135*	136*	137*	136*	139*
00302	00303	90500	00305	00306	00307	00310	00312	00313	00314	00315	00316	00317	00320	00321	00322	00323	00324	00325	00326	00327	06330

APPENDIX II

COUPLING LOSS MEASUREMENT PROCEDURES

This Appendix contains generalized test procedures which are applicable for the validation of the coupling losses indicated in this report (See Figure 3-3, SECTION 3). Two measurement methods are described, a directly indicating technique for the coupling losses at frequencies below 1000 MHz, and a signal substitution technique for measuring the coupling losses at frequencies above 1000 MHz.

Direct Measurement Technique

The test equipment configuration to be used for the coupling loss measurement at frequencies below 1000 MHz is shown in Figure II-1.

Figure II-1. Equipment Configuration for Measurements Below 1000 MHz.

The types of equipments recommended for use are:

	Frequency Range	Type
Signal Generators	10-480 MHz 800-1000 MHz	HP-608E, or equivalent HP-8614A, or equivalent
Tuned Voltmeter	1-1000 MHz	HP-8405A, Vector Voltmeter, or equivalent
Tee Connectors	1-1000 MHz	HP-11570A, Accessory
Matched Load	1-1000 MHz	Kit, or equivalent

If these equipments are operated in accordance with the manufacturers instructions and in the illustrated configuration, the following parameters can be read directly.

- 1. The voltage applied to the transmitting antenna. (Channel A).
- 2. The voltage applied across the matched load of the receiving antenna. (Channel B).

The observed coupling loss is then:

Coupling loss (dB) = 20 log Channel A voltage/Channel B voltage

In performing the measurements, the following procedures should be followed for each transmitting/receiving antenna combination being considered:

- 1. Disconnect transmission lines associated with the transmitting and receiving equipments under consideration at the input to the respective equipment.
- 2. Connect the transmitting and receiving transmission lines to the proper tee connectors as shown in Figure II-1.
- 3. Tune the signal generator to a convenient frequency within the operating range of the transmitter.
- 4. Tune the voltmeter to the same operating frequency as that of the signal generator.
- 5. Record the output voltage level of the generator as indicated with the voltmeter selector switch on Channel A.
- 6. Record the received voltage level as indicated with the voltmeter selector switch on Channel B.

7. Repeat the measurement four additional times at different frequencies within the operating range of transmitter.

8. Reverse the antenna connections and perform the measurement five additional times on the same operating frequencies previously used.

This procedure should be followed until the coupling losses have been determined between each transmitting antenna which normally operates below 1000 MHz and all of the remaining antennas on the Sabreliner.

Signal Substitution Method

The test equipment configuration to be used for measuring the coupling losses at frequencies above 1000 MHz is shown in Figure II-2.

Figure II-2. Equipment Configuration for Measurements
Above 1000 MHz.

The types of equipments recommended for use are:

Frequency Range

Type

Signal Generators

800-2400 MHz

HP-8614A, or equivalent

1800-4500 MHz

7-11 GHz

HP-8616A, or equivalent HP-620B, or equivalent

Spectrum Analyzer

10 MHz - 40 GHz

8555A/8552B/141T or equivalent

Amplifier (If Required)

7-11 GHz

HP-495A, or equivalent

Power Meter (If Required)

7-11 GHz

HP434, or equivalent

Connectors & Adapters

as required

In performing the measurements, the following procedures should be followed for each antenna combination to be considered:

- 1. Disconnect the transmission lines associated with the transmitting and receiving equipments under consideration at the input to the respective equipments and connect them to the test instruments as shown.
- 2. Tune the signal generator and spectrum analyzer to a frequency within the operating range of the transmitting antenna.
- 3. Set the attenuator control for the signal generator in its highest position (lower power output).

4. Set the sensitivity control of the analyzer in its mid-range position and the attenuator in its lowest position.

- 5. Increase the power output of the generator until a clearly visible signal is shown on the spectrum analyzer display and record the output power of the generator in dBm as well as the reference level to be used with the analyzer.
- 6. Decrease the generator output signal to a minimum level (maximum attenuation).
- 7. Disconnect the test equipment from the Sabreliner transmission lines and connect the signal generator directly to the spectrum analyzer through a short piece of transmission line as indicated for the signal substitution path in the figure.
- 8. Increase the power output of the signal generator until the visible signal to the analyzer is at an identical level to that previously recorded.
 - 9. Record the output level of the generator in dBm.
- 10. The coupling loss is equal to the algebraic difference in dBm, between the output power recorded for the direct path and the output power recorded for the substitution path.
- 11. Repeat the measurement four additional times at different frequencies within the operating range of the transmitter.
- 12. Reverse the antenna connections and perform the measurements five additional times on the operating frequencies previously used.
- 13. Repeat the procedure for each transmitting antenna with an operating frequency above 1000 MHz.

Special Procedures for 7-11 GHz Substitution Measurements

When the operating frequency is between 7-11 GHz, it may be necessary to further amplify the signal generator output to obtain a usable direct path signal on the spectrum analyzer display. If this becomes necessary the following procedures apply:

- 1. Insert the amplifier between the signal generator and transmitting antenna as shown by the dashed lines in Figure II-2.
- 2. Increase the power of the signal generator until a usable signal is observed on the analyzer.
 - 3. Record the output power indicated on the signal generator.
- 4. Reduce the output level of the signal generator and substitute the power meter for the transmitting antenna.
 - 5. Increase the output level of the signal generator to the level recorded in 3.
 - 6. Record the amplifier output level as indicated by the power meter.

7. Disconnect the signal generator from the amplifier, disconnect the analyzer from the receiving antenna, and connect the test instruments to each other as shown in the figure as the substitution path.

8. Perform Steps 8 - 13 as described in the previous procedures.

Precautions to be Followed

It is desirable that these measurements be made while the Sabreliner is in flight to minimize perturbations due to objects in the physical environment. In addition, all of the transmitting equipment installed on the airplane should be de-energized for these tests to prevent contamination of the measurements by undesired signals. It is recognized, however, that these two options may be mutually exclusive. Since the second factor is obviously more important in terms of potential effects on the observed data and more easily achieved from a logistical point of view, it appears satisfactory to perform the measurements while the aircraft is on the ground. Nevertheless, the aircraft should be in an area which is as clear as possible with respect to nearby metal objects, and the test frequencies chosen should be separated as far as is feasible from the frequencies in use by the nearby operational equipments.

Finally, although Figure 3-3 of this report contains no coupling loss predictions involving the HF long wire antenna on the Sabreliner, the measured value of the losses between the HF antenna and other antennas on the aircraft should be obtained. Further, the losses should be obtained on at least five operating frequencies within the HF range.

APPENDIX III

FREQUENCY ANALYSIS SYSTEM (FAS) SUBROUTINE

This Appendix contains the flow diagram and the program listing for the FAS subroutine used to calculate the relative rejection characteristics of receivers. The flow chart is shown in Figure III-1. The program listing, which is written in the FORTRAN V language, is shown in Figure III-2.

Figure III-1. FAS Flow Chart. III-2

Figure III-1. (Continued).

Figure III-1. (Continued)

Figure III-1. (Continued). III-5

Figure III-1. (Continued).

Figure III-1. (Continued).

```
0-101
00161
                   C ... THIS SUBROUTING CALCULATES OFF-FREQUENCY REJECTION
            3 .
19100
             4 .
                   C ... INPUT PARAMETERS
0 2 1 () 1
             4.0
00101
                  C ... HECEIVEN
06101
00101
                   C 000 FIR0F2N = LOWER AND UPPER LIMITS OF TUNED FREQUENCY THRE!

C 000 FA,FB = LOWER AND UPPER FREQUENCY CUTOFF FUR SPURIOUS RESPONSE INNE!

C 000 MI0M2 = FINST AND SECOND SELECTIVITY SLOPE FALLUFFS TOBYOEC!
50101
             7.
30101
            10.
10100
            11.
                   C ... BH
anter
            120
                                     - BANUALOTH IMHZE
                   C ... FIF
                                     - INTER-EDIATE FREQUENCY INNZI
- LOCAL OSCIELATON POSITION IASABOVE. BSELOB. COUNKNOBNI
Octor
            13.
00101
                   C ... KI
                                     - IMAGE REJECTION TORE
10100
            15.
                   C ... KS
                                     - SPURINUS MEJECTION TOBI
DOILI
            170
                   C ... THANSHITTER
00101
           18.
00101
            17.
                   C +** FIT. 12T = LOMEN AND UPPER LIMITS OF TUNED PREGUENCY IMAZE
C *** FC.FU = LOMEN AND UPPER LIMITS OF FILTEN IMAZE
C *** BIT. BZT = FINST AND SECOND BANDBIOTHS IMAZE
            20.
00101
00101
            21+
10100
           220
                                     - FIRST AND SECOND EMISSION SPECTRUM SLOPE FALLOFFS TOB/DECL
00101
           23.
                   C +** N1+N2
                                     - MAXIM, M NARMONIC NUMBER TO CONSIDER IL TO TI
- MARMONIC REJECTION IDBI IUP TO EIGHT DIFFERENT LEVELS ALLOWEDI
00101
           240
                   C ... NII
                   C ... KH(81
00101
           250
                   C *** 1734
00101
           24 .
                                     - HODULATION TYPE
                   C ... IPCOMP
                                    - PULSE COMPRESSION INDICATOR
10100
            270
            28.
                                     - STRETLHED PULSERIOTH JUSECI
                   C . . PRT
                                     - PULSE RISE TIME IUSECI
00101
            290
00101
            30 .
            31+
00103
                           HEAL MISKISKS SHEINISKN , NESLESSEF SLEES
                           INTEREM NOCCHNL
COMMON/RBLOCK/A1321offpobrob121om1of1Nof2RoKiok$oLOPocof1o0131om2o
00104
            17.
            33.
00105
05105
                          *E(171,FA+FB+RBL(1491
00164
                           COMMON/TBLOCK/W1331.BIT.FILL.1T36:N1.FIT.F2T.KN181.N2.6131.PMT.
            360
                          *66(21, TAU, R13) . [PCOMP, FC, FO, RK141, B2T, N11, YBL(1411
DELUA
00107
            37 .
                   CONMON/PBLOCK/AAIIVI.LT.888(21.44.PBL(371
06107
            38.
                          COMMON/28LOCK/C6MNL.PC.LFI_LF2.LF3.OF.OFS.BM.IMAG.FIP.F2P.OF1.0F2.
*OF3.UF4.OF5.DF6.OFFILI.OFFIL2.PI
            37.
00110
            40.
05111
                           DATA P1/3.14159/7/16/1HC/
                           PI=N1/10+
IF(IPCUMP+EQ+1C) GO TO I
00114
            42 .
00115
            43.
                        GU TO 3
1 IF (B17/2+LT+1/(P1+PRT1) GO TO 3
00120
            44.
            45.
00122
            460
                           NIENZ
00123
            47 .
                        3 [HAG"U
00124
            48 .
                           HOL
00125
            47.
                           CCHNLad
95100
            50 •
                           NI=N1/10
DO 127
                           N2.N2/10
            510
00130
           52 .
                           HI-HI/10
           53.
00111
                           H2=H2/10
                           0F1=F11=F2R
0F2=F1N=F2T
00132
00133
            550
                           BREAMANI IBIT .....
00134
```

Figure III-2. FAS Program Listing.

```
570
03135
                         FIREFIR
05136
          540
                         FZP#FZR
00137
           590
                          DFFILIOF) T-FC
00140
           40.0
                         OFFILZefO-F21
                         IF (OF 1-0+)80,80,81
0 < 1 4 1
           41 .
                      00144
           620
05147
           630
                  65151
           44.
03153
           ...
           67.
00153
00154
                     12 1F10F1+LT+(B2T+,-R1/2) 40 TO 40
           67.
                  C . ** TRANSHITTLE TUNED ABOVE RECEIVER
00157
           70 .
                        DF = DF |
DF S = F H = F 2 h
14130
           710
           72.
00162
                          GD TD 8688
           73.
00163
           74.
                  C . ** TRANSHITTER TUNED BELOW RECEIVER BY (BR+B2T1/2
00163
                      11 CALL HARMIS231
17 [F]H+F2T+LT+FA=182T+BH1/21 GD TO 18
00164
           75 •
00165
           760
           77.
                         1F 1H+F 1T+GT+FB+182T+BR1/21 GO TO 15
00147
                          60 10 7777
00171
           78.
                     16 DFS=F3=FZH
00172
 00173
           80+
                         GD TO 8888
                  15 If (H=21 la.16.16

C = 0 THE SECUND HARMONIC IS OUT OF BAND AND THE FUNDAMENTAL IS EVEN FARTHER

C = 0 ARAY 11.E. OUTSIDE OF NECETVER TUNING RANGE)

18 OFS=F1R=FA
00174
0p174
           82.
00174
           #3.
00177
                  GO TO 8888
C .** TRANSHITTER AND RECEIVER ARE COCHANNEL
0020n
           45.
0020-
           86.
                     20 CCHNLa)
00201
           87 .
                         CALL POREN
00202
           ...
           87.
00203
                      22 [F1H-219999,24,24
24 ALFP#LF-KH(H+1)
           90.
00207
           71 .
                  GO TO 6666
C 600 THE TRANSMITTER IS LESS THAN BR/2 AWAY FROM THE MECELVER TUNING MANGE
00210
           920
00210
           930
                     60 |FIFIN=FA=(82T+WRI/21 65.65.67
67 |FIFU=F2R=(82T+WRI/21 65.65.67
69 |FIFU=F2R=(82T+WRI/21 65.65.69
69 |FIFU=F1=0+) 66.66.70
00211
           74.
           950
05214
00217
                      66 DF #DF 2
DF S#F LR=FA
00222
           970
00223
           78.
           99.
                          GO TO HESE
00224
                      70 DF OF L
 00225
          100.
05220
          101.
                          DESDEB-FZH
 03227
          102.
                          60 TO 8884
                      65 IF(DF1.6T.D.) GD TO AR
00230
          103.
                         OF # OF 2
GO TO 7777
          104.
00232
          105+
 00233
00234
          106.
                      as DraDf1
                  GO TO 7777

C *** THE THANSHITTER IS MITHIN THE RECEIVER TUNING RAUGE
30 (F10F2+6T+8H/Z) GO TO 35
00235
          107.
          10 H .
          107.
 00236
          110.
                          1#10F1-6H/2120,20.32
 00241
                      32 DF OF 1
```

Figure III-2. Continued.

Figure III-2. Continued.

Figure III-2. Continued.

ENTRY POINT 300325

SUBKOUTINE OBAND

STORACE USED (BLUCK, NAME, LENGTH)

0000046 000000 000017 0001320 000031

• COUE • OA1A • BLANK RBLOCK TBLOCK FBLOCK ZBLOCK

00000

EXTERNAL REFERENCES (BLOCK, NAME)

	0001 000171 4L		9			. 000		* 000073	E	30	1	0005 1 000024 H	•	q	2			16
	000307 2, L	000274 99996		000000 CCHNL	000002 OF C	000000 0FS	000017 OF 8	000102 FB	000000	000015 F14	000046 F2T	99 490000	000072 IPCOMP	×	000051 LOF	000057 NZ	0000047 8	7 \$10000
	1000	1000	9000	1 9000	0000	W 9000	9000	0003	0000 K	, 0000 R	0004 B	\$ 000	▶000	0000 R	000	# P000	\$ 000	0000
RUP ER (610 K38 NT FOR VARIABLES 18LOCK, TYPE, HELA!1VE, OCATION, MAME!	000144 2L	000132 PL	000024 08	000052 C		9 JO 600000 W	000016 OF	0001U1 FA	000040 616	R 000013 F12	00004 FZR	9 090000	000000 1×175	_	R 000004 LFJ	000102 N11	0 000000	000103 TBL
. KELA 13 VE .	1000	1000	\$000	000			9000	0003	0000		0000	1000	0000	0000	9000	\$000°	*000	6000
CK, TYPE	000243 111	73 76		129 10		22 OFF162	15 043	42 4	14 65	45 F 1 T	12 FZP			47 KH	03 (7.2	-2	63 PRT	66 TAU
K S 18L06				æ	œ	œ			1 000053			×		x	×	×	_	**0000
VARIABL	1000	000	0000	*000	0000	9000	9000	0000	0000	0000	9000	0000	*000	000	9000	000	0000	000
0007 INTRUP 0010 PORER 0011 NEAPS 0013 NERK38 0013 NERK38 570RACE ASSIGNMENT FOR	000304 10L	000124 66			500000	000021 0561	9	-	-	- 1	000017 516	- '	1 500,000	7 900,00	٠.	000057 M2	000001 76	000075 RR
STORAGE	1000	1000			0000 R	9000	9000	000	+000	0000	0000	0000	1 (0000	0000	¥ 9000	000 K	0000	† 00 0

Figure III-2. Continued.

SUBROUTINE DEAVE REAL MISKI,KSSMZSMISKM.MZSLF,LFILFZ,LFJ

- 2

00100

```
0-101
                          SUBROUTINE 134 D
00103
            2 .
                          HEAL HISKISSIMZINDIKHINZILFILFILFZILF3
00104
            3.
                          INTEREN COMML
                          INTEGER H
COMMON/MBLOCK/A}37;+F}F+BM+B(21+M1+F1M+F2M+K1+K5+LOP+C+F1+O(3)++2+
00105
0010A
            50
                        -E(171,FA:FB:KBL1140)
COMMON/TBLOCK/4(33),B)T.F([),1736,M1;F17;F27,KM(B),M2,W(31,PMT,
00104
            6.
            7 •
00107
                         +GG(2), TAU, R(3), 1PCOMP, FC, FD, RN(41, 82T, N11, T8L114)}
00107
            H .
                  COMMON/PBLOCK/AA(19), LF, BB(21, H, PBL(371
C *** THIS COMMON HLOCK IS GENERATED BY OFR
00110
             9 .
           10.
                         COMMON/ZBLOCK/CLHKL, PC, LF1, LF2, LF3, OF, OF5, KH, (MAGE, F1+, F2P, OF1,
00111
           110
00(11
           12.
                         +DF2,UF3, DF4, OF5, OF6, OFFIL1, OFFIL2
           130
05112
                          CCHNL=U
                          CALL INTRUP(1,J,$)01
OF=A85(OF)
00113
           15.
00114
                          DFA=ABS(DF-BR/2)
00115
           14.
           17.
                          OFB=821/2
00116
           18 .
                          OFC=OF+BR/2
03117
00120
            190
                          OFD=OF+BIT/2
00121
           2110
                          OFE = AUS (OF -B) T/21
                          FI-1/BIT
00122
           210
                          F2-1/)N1-11
DO 123
           220
                               ({817/(2.0Full.+N1)+DFR
00124
                           IF (OF.LT. (BN+61T1/21 40 TO 1000
00125
           24 .
00127
           25.
                          F4. () 617/(2.0FA) 1. . NI) + DFA
                           F9- ()8H/(2*nFE11++H1)+OFE
00130
           240
00131
           270
                          CF = D .
                  GO TO 1001
C .** THE TRANSHITTER AND RECEIVER ARE NOT CO-CHANNEL, BUT LARGE BANDEIDTHS
00112
           28 •
00132
           30 •
                  C . . CAUSE THE EHISSION SPECTRUM AND SELECTIVITY CURVES TO OVERLAP, BMICH
                   C ... RECESSITATES CONRECTIONS TO THE OFH INTEGRAL
00132
           3) .
                    1000 F4=817/2
F7=BH/2
CF= 1(B1T+BR1/2 = OF1+ F1
00133
           32 .
00134
           33.
                    100) F5=(BIT/82T1++N)
00134
           35 .
                          Fe=1/(H2=11
00137
                           F7- ((OFB/OFC1++HZ1+OFC
            37 .
00141
            38.
                           FR. OFH
                           F12=(182T/(2+0FA1)++H21+0FA
00142
            37.
                           F13=1(B1T/(2+OFC1)++N)1+OFC
            40.
                   C ... IF THE RECEIVER TUNED PREGUENCY LIES OUTSIDE THE FILTER LIMITS C ... NO CALCULATION FOR MAXIMUM PORER TRANSFER AT THE HECLIVER TUNE
00143
            41.
                   C ... FREQUENCT IS MADE (FILTER IS ASSUMED IDEALI
IF(FC=0)89,89,79
00143
            43 •
            44.
                       79 IF (Montoll GO TO A4
IF (ABS) OF 11-ABS (OF 211 #3,83.81
05 (47
            450
00151
            460
                       #3 IF (A#5) OF LI-DFF | LI | #9,31,31

#1 IF (A#5) OF ZI-OFF | L2 | #9,31,31
00154
           47 .
00157
                       84 1F ((M-11+F2T.GT.OFF1L21 GT TO 31
89 (F(OF-)8R+82T)/21 92,40,90
            49.
00162
00144
            50.
                       92 1610F8-0FC193.91.91
00167
           510
                       93 ZeF1 + (1 F4 - F3 1 + F2 + F5 + F4 + 1 F8 - F7 1)
00172
           52 .
                       99 Z = Z + CF
1F (Z = 0+) 10+10+999
00173
           53 .
00174
```

Figure III-2. Continued.

Figure 111-2. Continued.

ENTRY POINT DOUSTO

SUBROUTINE IBAND

STORAGE USED (BLOCK, NAME, LENGTH)

00000

	0
	tinued
	Cou
(-2
	ە
	- Idure
	_

		_	•		_	-	-	-	_	_	_	_		_		_		_	_			
	300313	200237	00440	200000	000000	100000	300022	410000	101000	000000	00000	20000	21000	00000	00000	7 0000	200003	**0000	. 4000	14000		
	_				_			_	_	_	,			,	_							
	1000	000	000	9000	9000	0000	9000	9000	000	0000	0000	9000	9000	*000	0000	0000	4000	*000	*000	*000		
					v																	
	000410	000231	000300	\$20000	250000	200000	00000	910000	0000042	000003	240000	00000	00000	00000	010000	0000047	000000	00000	100000	00000		
						qc	œ					qc	Œ	×	-	œ	2	ec	•			
	1000	0000	0000	5000	000	0000	9000	9000	\$000	0003	000	0000	0000	0000	9000	P000	9000	0003	9000	000		
NAME.	1001	40F	116		8.27	0.6	OFL	7 10			*14	F 13	13	F 60	-	7	ני	ī	184	198	7.7	
2	0	•		~	_		•	*	3													
LOCATIO	0000	0000	24000	*0000	R 00010	R 00000	R 00000	R 00001	90000	00000	*0000	R 00002	R 00001	R 00002	1 00000	1 00000	R 00002	R 00004	20000	000010	R 000026	
w.	-	=	-	~	*		0	•	~	*	-	0	0	0	0	0	S	~	S	2	0	
KELATIVE LOCATION,	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	0000	
TYPE	10001	324	10¢	VV	114	3	0.0	1 40	9 40	9 1	4	F 12	F 2 T	14	I	1136	A SP	401	24	¥	2	
×																				11	2	
1810	000	0000	* 000	0000	1,0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
5	_	_	_		-	_	ж О	_	_	*	_	_	-		_		_	_				
TOHAGE ASSIGNMENT FOR VARIABLES IBLUCK, TYPE,	1000	000	000	000	000	000	000	000	000	000	0000	0000	000	0000	000	000	0000	000	000	000	0000	
FOR																1						
F	101	=	7		×	La. 1	<u>.</u>	5	2	10 -	_	_	Z R	•	٠	S	5		=		9	
A H	-	_	*	٩ .	-	-	o :		-	-			-	-	9	~	٠.	_	z	3	_	
ASSIG	594000	20000	52000	00000	*0000	10000	00000	00000	10000	0000	00000	0000	740000	10000	90000	0000	50000	00000	000010	00000	00010	
4					×	œ	Œ				Œ	œ		x			×	QC				
STORA	000	1000	1000	0003	0000	2000	0000	4000	9000	0000	0000	0000	000	0000	1000	,000	000	9000	*000	*000	*000	

0007 INTRUP 0010 POWER 0011 NEXPAS 0012 ALUGIU 0013 NEMRSS

```
Fish(UFS/OFFIshBooks)

*** TRESELTIVITY CURVE

*** ON THE SECOND SLOPE (NAXINUM POBEN TRAMSFER AT THE THANSMITTEN TUNED PRE9)

22mf : ** Fig *** (FIS *** Fish )

1F(22 *** Os) 20,20.8
                                                                                                                                                                                                                                   INTEGER H
Cornon/Kelock/ai321.Fif.br.bl.pi.Fik.F2R,K1,K3.LOP.C.F1,O(3),M2,
                                        COMMON/TBLOCK/4(33), BIT . FIII, IT36, NI, FIT, FZT, KH(B), NZ, G(3), PRT,
                                                                                                                                                                                                                                                                                                                                                                                                          LF2mlu+ALUG|0[2Z]=KS
|F(4Fc,LT+&1T] LF2=LF2+|0+ALOG|0[8N/8]T]
|F(H=2) 9999,80,80
                                                                                                                                                                                                                                                                                    2 2a Fl . Fs . Fs . ( F12 - F7 )
                        E(171,FA.FB. HBL1140)
                                                                                                                                                                                                                                                                                                                                                             FISHIOFS/DFGIOOMZODFG
                                                                                                                                       OF 6=A65 (OF -817/2)
CALL INTRUP(1,J,$10)
                                                                                                                                                                                                                                                                                                                                           CALL INTRUPESSO, $201
                                                                                                                                                                                                                                                                                              IF (2 - 0.) 10.10.3
                                                                                                                                                                                                                     1F (FC=012,2,1
                                                                                                       OF A.A.B.S (OF -BK/2)
                                                                                                                                                              F5=(8|1/821)....
F4=1/(N2=1)
                                                                                                                                                                                                                                                                                                     LFI-10-ALOGIO121
CALL POWER
                                                                                                                                                                                                                                                                                                                                                                                                                                  80 LFISLFISKHEII
                                                                                                                                                                                                                                                                                                                                                                                                                                          LF 2-LF 2-KH (H-1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                   9999 CALL INTRUPILL
INTEGER CCHNL
                                                                                                UF SeAMS (OF S.
                                                                                                                               OFF = OF + 811/2
                                                                                                                                                                                                                                                                                                                                                    F1401/(N2-11
                                                                                                               OF 6 0 0 + 8 1/2
                                                                                CCHNL=U
OF *ABS(OF)
                                                                                                                                                                                                                                                                                                                     LF I olf I +PC
                                                                                                                                                                                                                                                                                                                                      LF 1 . . 999 .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      LF 1 -- 400 .
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      LF 2==400.
                                                                                                                                                       F1+1/817
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             60 TO 11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              60 10 7
                                                                                                                                                                                                                                                                                                                                                                                                                                                              RL10FN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     20
                                                                 -255
                                                                                                      ***
                                                                                                                                                                                                                     200
                                                                                                15.
                                                                                                                             .
                                                                                                                                       200
                                                                                                                                                              230
                                                                                                                                                                                                                                                           35.
                                                                                                                                                                                                                                                                                            39.
                                                                                                                                                                                                                                                                                                     .0
                                                                                                                                                                                                                                                                                                                                                                                                 53.
                                                                                                                                                                                                                                                                                                                                           450
                                                                                                                                                                                                                                                                                                                                                    . .
                                                                                                                                                                                                                                                                                                                                                                                 .00
                                                                                                                                                                                                                                                                                                                                                                                                                          .55
                                                                                                                                                                                                                                                                                                                                                                                                                                  . 95
                                                                                                                                                                                                                                                                                                                                                                                                                                                    5.80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    .04
                                                                00111
                       00100
                                        00107
                                                01100
                                                        00110
                                                                                       00113
00114
00115
00115
00117
00120
00121
                                                                               00112
                                                                                                                                                                     00125
00126
00127
00127
00127
                                                                                                                                                                                                                   000133
                                                                                                                                                                                                                                                                           00144
                                                                                                                                                                                                                                                                                            00151
00154
00155
00156
                                                                                                                                                                                                                                                                                                                            00157
00160
00161
00162
                                                                                                                                                                                                                                                                                                                                                                  **100
                                                                                                                                                                                                                                                                                                                                                                                 00164
                                                                                                                                                                                                                                                                                    00150
                                                                                                                                                                                                                                                                                                                                                                                                 00144
                                                                                                                                                                                                                                                                                                                                                                                                                 00172
                                                                                                                                                                                                                                                                                                                                                                                                                                                   00201
                                                                                                                                                                                                                                                                                                                                                                                                                                                            00202
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    05203
                                                                                                                                                                                                                                                                                                                                                                                                                                          00200
                                                                                                                                                                                                                                                                                                                                                                                                                                  00177
```

	201	_	1		7	_		171	DEF 1L	140	940	٥	1 X	.00	01	I	.72	15	U		
	0004000													000	200	047	003	057	100	075	
	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	900	000	
	0000	1000	0001	1000	1000	1000	0003	₩000	9000	¥ 4000	9000	\$000	0000	+000	0000	# 0000	9000	0000 M	9000	\$000	
	2,	32r	136	2	721	77.5	44	61T	90	0.40	0F\$	=	414	F27	10	1136			78.	RBL	
	.10000																				
									æ	œ			¥	æ	-		œ				
	000	000	000	000	000	000	000	000	9000	000	000	000	000	000	000	000	000	000	000	000	
_										,											
NAME	136	316	421	476	711	766	•	2	0	0 5 5	* 40	FA	111	F 2 H	•	IPCOM	7	LOPP	H 2		
LOCATION,	944000	000337	196000	114000	1 2 1 0 0 0	000243	00000	00000	* 40000	900000	410000	0000101	040000 ×	8 00000 A	1 000000	2 / 0000	R 000023	1 00000 1	R 000057	00000	
STORAGE & SSIGNMENT FOR VARIABLES IBLOCK, TYPE, WELBTIVE LOCATION,	1000	1000	1000	1000	000	000	0000	0000	0000	9000	9000	000	0000	0000	0000	*000	\$000	0000	*000	1000	
TYPE.																				•	
IBLOCK	000443	000322	000352	000000	000164	000232	00000	00000	000000	000000	00000	000042	00000	000012	000024	000013	050000	00000	000102	000000	000000
VARIABLES	000	000	000	0001	000	000	000	4000	9000	0000	9000	0000	0003	9000	0000	0000	000	0000	1000	0000	₩000
F O R	0		ő	15		i	•	وي ل		F F 1 L 2	£ 2	1		1	٠	MAGE	-	F.3	-	PRT	PΩ
SSIGNME																				000003 P	
STORAGE .											2	•		, a	:	-		. 00	2	1000	

ENTRY POINT UDUSIZ

SURROUTINE IMAGL

STORAGE USED (BLUCK: NAME: LENGTH)

• C 00 E

EXTERNAL REFERENCES (BLOCK, MANE)

00007

```
0-101
                           SURROUTINE IMAGE
                           HEAL HISKI, KS. HZ. NI. KH. NZ. LF, LFI, LFZ, LF3
00103
             2 .
00104
             3 •
                           INTEGER CCHML
00105
             4 .
                           INTEGER H
                           00104
             5 .
                         *E(171.FA.FB.HHL11401
COMMUN/TBLOCK/4133).B1T.F117.IT36.M1.F1T.F2T.KM(87.M2.6131.PRT.
*GG121,TAV.H131.1PCOMP.FC.FO.RH141.B2T.H11.TBL11411
00104
             4.
82187
00110
           10.
                   COMMON/PBLOCK/AA1191, LF. BB(21, H. PBL1371
C . ** THIS CONNUN BLUCK IS GINEHATED BY OFR
                          COMMON/ZBLOCK/CCHNL,PC,LF1,LF2,LF3,OF,OF5,BN,1MAGE,F1;,F2P,OF1,
OF2,OF3,OF4,OF5,OF4,OFF1L1,OFF1L2
00111
           110
00111
                          OATA [A/IHA/IB/[Hb/1C/[HC/
INAGE=]
00112
            13.
00116
            140
            15 .
00117
                           HHI
                   LOP-LOPP

C ••• THE USER HAS THE OPTION OF NOT HAVING THE INAGE INTERACTION

C ••• CONSIDERED BY ENTERING A VALUE OF 900 OR GREATER FOR IMAGE REJECTION
00120
00120
            18.
                           1F(K1=900+1 2+1+1
00121
00124
            20.
                        1 1/3=-+00+
00125
                        60 TO 999
2 IF (LOP.E9. | A | GO TO 3
00130
           23.
                   GO TO 70 C . ** IF THE LOCAL OSCILLATON IS ABOVE THE RECEIVER AND THE TRANSMITTER 15
                   C . ** BELOW, CONSIDEM TRANSMITTER HARMONICS* INTERACTION WITH THE INAGE
3 IFIFZT.LT.FIRI 60 TO 4
00130
            25.
            27 •
                        60 TO 5
00133
00134
            28 .
                           F2P+F2H+2+F1F
00135
           29 .
                   CALL HARNISZOI
GO TO 10
C . . THE TRANSHITTEN IS LELOW THE IMAGE BY NAX(BIT/2, BR/21 THEN
C . . THE TRANSHITTEN OF THE THAGE
E . THE TRANSHITTEN OF THE THAGE
00134
            300
00137
            31 .
00137
            33.
                        5 | F | F | F | E | T | B | F | F | F | F | G | T | 6
00140
           340
00142
           35 .
                           GO TO 7
                        4 DF0= F1T=F2R=2+F1F
00143
           34.
00144
            37 .
                           OFH=2+FIT-FZR-2+FIF
                   GO TO 40

C ** IS THE LOWER FREGENCY OF THE TRANSMITTER CO*CHANNEL WITH THE IMAGE?
7 IFIFIR*2*FIF*BM/2*GT*FIT*OK*FIT*GT*F2R*2*FIF*BM/2*I GO TO 8
00145
           30.
00144
            40.
                   00150
           410
00150
00151
            43.
                       6 1F1F1H+2*+1F-8H/2.GT.F2T.OR.F2T.GT.F2N-2+F1F+8H/21 6U TO 9
00153
           44.
                           60 TO 20
                       9 OF . FIT-FZR-2-FIF
00154
           45 .
                      GO TO 10
70 1F(LOP.EQ.181 GO TO 71
00155
            460
00156
            470
                   GO TO JO

C ... IF THE LOCAL OSCILLATOR IS BELOW THE RECEIVER AND THE TRANSMITTER IS
            48+
00140
00160
            49.
                   C . . ABOVE. SET THE OFM OUL TO AN IMAGE INTERACTION BITH THE THANSMITTER C . . TUNOAMENTAL EQUAL TO . WOO AND RETURN TO CALLING PMOGNAM
00160
           50 .
00160
           51 .
                       71 | FIFIT. 6T. F2H1 40 TO 72
00141
           520
                       60 TO 73
00161
           530
PAIDO
           540
```

Figure III-2. Continued.

```
00165
           55 .
                           60 TO 999
                   C . ** IF THE TRANSHITTER IS BELOW THE IMAGE BY MAXIBIT/2, BR/21 THEN C . ** CONSIDER A MARMONIC INTERACTION WITH THE IMAGE
001A5
           67.
CALOC
                       73 1F(F2T+BM/2+LT+F1H-2+F1F) G0 T0 74
00166
           58+
                       60 TO 75
74 DFU# FIT#F2R+Z+FIF
0017n
           590
           40.
00171
                           OFH=2+FIT-F2R+2+FIF
           610
00172
                   GO TO 40 C .** IS THE LOBER FREGENCY OF THE TRANSMITTER CO-CHANNEL WITH THE 1446E7
           63.
00173
00173
00174
            44.
                       75 IF (FIH-20F1F-8H/2.GT.F11.ON.F1T.GT.F2R-20F1F+8H/21 GU-TO 76
                   GO TO 20
C *** 15 THE UPPER FREGENCY OF THE TRANSMITTER CO-CHANNEL WITH THE IMAGE?
7A 1F(FIR-2*F1F-BH/2.GT.F2T-UH.F2T.GT.F2R-2*F1F-BH/2/GO TO 7/
0017A
            65.
00176
            6A.
00177
                           60 10 20
            ...
00201
                       77 OF # F2H-2+F1F-F2T
            69.
03202
            70.
00203
                       30 1F(F17.6T.F241 60 TO 31
00204
            710
                           IF (F2T+LT+FIRE GO TO 32 RETURN O
            72 .
00204
            73.
00210
00211
            74.
                       31 LOPELA
00212
            75 •
                           60 10 5
00213
            760
                       32 LOPels
00214
            77.
                       60 10 73
40 lF(0FH+6T+0) 60 TO 4)
            78.
                       60 TO 44
41 IF(0F0.LT.100.0FH) 60 TO 42
            79.
00217
00220
           80.
00222
           81 .
                           60- TO 43
                       42 OF-OF0
60 TO 10
00223
           82.
00225
            64.
                       43 OF BOFH
00226
            85 .
                           H=2
           86.
                       60 TO 10
44 IFILOP-ER-14160 TO 45
00227
00230
                          60 10 46
00232
                       45 FIPE FIREZOFIF
00233
            87 .
                       F2P= F2R-2-F1F
60 T0 47
46 F1P= F1R-2-F1F
F2P= F2R-2-F1F
00234
            ...
            71.
00235
00234
            93.
00237
                       47 CALL HARMISZO)
10 OF | =F|T-F|ZP
    OF | =F|T-F|ZP
    CALL | BANO
    1F|LF|Z=LF|1 | 11-12-12
00240
00241
            75.
            9A .
00242
00243
00244
                        11 LF3-LF1-K1
00247
            ...
                        60 TO 13
12 LF3=LF2=K1
00250
           100.
           102 .
                        13 1F1H+LT+21 60 TO 999
00252
00254
           103.
                           LF3=LF3=KH1H=11
           104.
                   GO TO 999
00255
00255
00254
                       20 CCHNLal
LF3=K1
           104.
           107 .
00260
           108.
                           CALL POREN
00261
           109.
                            IF (H+LT+2160 TG 999
OGZAZ
           110.
                           LF3=LF3-KH(Hall
          111.
00264
                      TYY RETURN
           112.
00265
0G26A
                           END
           113 .
```

Figure III-2. Continued.

POINT 001041	LENGTH)
ENTRY P	NAME! L
HARM	(BLOCK,
SUBROUTINE H	STORAGE USED

001054 000132 000317 000320 000074	
• CODE • DATA • BLANK HBLUCK TBLOCK FBLOCK ZBLOCK	
00000000000000000000000000000000000000	

EXTERNAL REFERENCES (BLOCK, NAME)

MAN	17	201	2356	276	316		20	CALZ	DEL2	DFS	DFS		FD	FIL	99	ILIM	11	IX	163	TTN.	a	TAU
LOCATION	000022		000330		000721	_	00000		0		000017		00000	R 000045	*90000	1 000066	1 000075	K 0000047	M OUUDD#	1 000102	000000	990000
FOR VARIABLES IBLOCA, TYPE, RELATIVE LOCATION,	0000	000	000	000	000	000	0000	0000	0000	9000	9000	0000	*000	*000	*000	0000	0000	0003	9000	*000	*000	*000
TYPE	1000L	19.	236	264	300L	766A	SM M	CALI	OEL1	UFN	UF4	03	FC	FIR	9	18	1736	HH	LF2	T Z	PRT	X OPE
(BLOCK,	00100	000260	000375	000521	114000	000725	/00000	270000	0000030	000024	000015	170000	00000	C#0000	190000	00001	000043	/ *0000	c00000	**0000	00000	c90000
(A)							ď	×	×	×		œ	œ			-		æ	×	œ		×
VARIABLE	0001	0001	0001	0000	1000	0001	9000	0000	0000	0000	9000	0000	#000	0003	1000	0000	4000	*000	9000	+000	*000	0000
S S										N							a.					
	146	161	2266	25	306	386	BB	u	٥	UFF1L2	OF 3	02	FG	FIP	F2T	-	I PCOMP	¥	LF1	X.	2	¥
ASSIGNMENT	000010	000243	000311	000513	000643	000752	#2000n	000052	#C0000	000022	C10000	00000	000102	000011	940000	000005	0000 /2	000004	000000	100000	00000	0000 /5
LJ Q										œ		¥	œ	ď	ď	-		=	ď	æ		
STORAGE	0001	0001	0001	2001	0001	0007	0002	0003	0003	9000	9000	0000	0003	9000	*000	0000	*000	0000	9000	0003	9000	#000 #000

Figure III-2. Continued.

```
SUBROUTINE HARM(S)
00101
           2*
00101
00101
                   *** NOTE : RETURN 1 GOES TO THE COCHANNEL PATH OF THE CALLING ROUTINE
00101
           4=
00103
           5=
                         DIMENSION HAR(10) / 18(10)
           6*
00104
                         REAL MIRKINKS, MZ . NI . KH . NZ . LF . LF1 , LF2 . LF3
            7=
00105
                         INTEGER CCHNL
00106
           8*
                         INTEGER H
00107
           9*
                         COMMON/RBLOCK/A(32)+FIF+BR+B(2)+M1+FIR+F2R+K1+K5+L0P+C+FI+D(3)+M2+
00107
          10*
                        *E(17) +FA+FB+RBE(140)
00110
          11*
                        COMMON/TBLOCK/Q(33) + 11+ F(1) , IT36 + N1 + F1T + F2T + KH(8) + N2 + B(3) + PRT +
          12*
                        #66(2) * TAU * H(3) * 1PCOMP * FC * FD * RR (4) * B2T * N11 * TBL (141)
00110
                 COMMON/PBLOCK/AA(19)*LF.BB(2)*H*PBL(37)
C *** THIS COMMON BLOCK IS GENERATED BY DER
          13*
00111
          14*
00111
00112
          15*
                        COMMON/ZBLOCK/CCHNL+PC+LF1+LF2+LF3+DF+OF5+BR+IMAGE+F1P+F2P+DF1+
00112
           16*
                        *UF2:DF3:DF4:DF5:DF6:UFF1L1:DFF1L2
                        DIMENSION DEN(10) DEL1(10) DEL2(10)
00113
          17*
          18*
00114
          190
                     10 UF=AMIN1(ABS(DF1), ABS(OF2))
00117
00120
          20*
                        KETURN
00121
          21*
                     11 1F(FC-0.) 8:8:6
          22*
                      6 DO 7 I=2.N11
1F((I=1)*F2T-DFFIL2) 8:8:7
00124
00127
          24*
                       7 CONTINUE
00132
                      60 TO 10
8 DO 9 1=1+10
00134
          25*
00135
           26*
                        DFN(1)=1*F2T-F1P
DEL1(1)=1*F1T-F2P
00140
          27*
00141
          28*
                         DEL2(1)=F1P-1+F2T
00142
           29*
           30=
                       9 CONTINUE
00143
00145
           31*
                         00 13 I=2:N11
           32*
00150
                         1F(DFN(1)-0.) 13,14,14
          33*
                     13 CONTINUE
00153
           34=
                  C *** THE MAXIMUM NUMBER OF HARMONICS TO CONSIDER HAS BEEN MEACHED
00153
           35*
                         DF=ABS(DEL2(N11))
00155
00156
           36*
                         H=N11
          37*
                         60 TO 20
00157
                  C *** THE FOLLOWING IS A CHARSE CO-CHANNEL TEST
           38*
00157
           39*
                     14 1F(DEL1(I).GT.U.)GO 10 15
00160
           40=
                         H=1
00162
00163
           41*
                         CCHNL=1
           42=
                         60 TO 949
00164
                  L *** THIS IS A MORE REFINED TEST TO SEE IF THE LOWER END OF THE TRANSMITTEN C *** HARMONIC IS COCHANNEL WITH THE MECELIVER (OR IMAGE)

15 1F(FIP-HM/2-GT-1*FIT-OR-1*FIT-GT-F2P+HM/2) GO TO 16
           43=
00164
           44=
           45=
00165
           46=
                         H=1
00107
00170
           47*
                         CCHNL=1
00171
           48*
                         60 TO 999
00171
           49=
                  C *** THIS IS A MORE REFINED TEST TO SEE IF THE UPPER END OF THE TRANSMITTER
                  L *** HARMONIC 15 COCHANNEL WITH THE MECEIVER (OR IMAGE)
           50*
00171
           51*
                     16 IF(F1P-BM/2.GT.I*F2T.GR.I*F2T.GT.F2P+BM/2) 60 TO 17
00172
           52*
                         H=I
00174
                         CCHNL=1
00175
```

```
00176
                              60 TO 999
                      C *** ONLE A HARMONIC 15 PICKED, THIS YEST DETERMINES WHETHER THE NEXT LOWEST C *** HARMONIC 15 CLOSER TO THE RECEIVER (DR IMAGE) 17 IF(DEL1(I).GT.ABS(DEL2(I-1))GO TD 18
00176
              55*
              564
00176
              57*
00177
00201
              58*
                                DF=DEL1(I)
              59*
                                H=I
00202
00203
              60+
                                1F(H.E9.1) GO TO 999
                      GO TO 20

L *** IF THE NEXT LOWER HAMMONIC IS CLOSER, IS IT ALSO CO-CHANNEL?

18 IF(F1P-BM/2.6T.(I-1)*FZT) GO TO 19
00205
              61*
00205
              62*
             63*
00206
             64.
00210
                                H=1-1
             65*
                                ECHNL=1
00211
                                60 TO 999
00212
00213
              670
                            19 DF=DEL2(1-1)
                                H=1-1
00214
              68*
                      IF(M.EQ.1) 60 TD 999

L *** AN HARMONIC H HAS BEEN PICKED. THE FOLLOWING CODING IS DESIGNED TO

L *** REMDVE THE ASSUMPTION THAT ALL HARMONIC LEVELS ARE EQUAL BY COMPARING

L *** THE FREQUENCY REJECTION CAUSED BY H-1; H, AND H+1. ANY HARMONIC THAT

L *** IS FOUND TO BE DUT OF BAND IS ELIMINATED FROM FURTHER CONSIDERATION;
00215
              69.
              70+
00215
              71.
00215
00215
              72*
              73*
00215
                       C *** REGARDLESS OF 1TS LEVEL.
00215
00217
              75*
                            20 DO 21 J=2.N11
00222
              76*
                           21 HAR(J)=KH(J-I)
00224
              77*
                                HAR(1)=0.
00225
              78*
                           22 IB(K)=0
              79*
00232
              80*
                                SLOPE=AMINI(N1+M1)
00233
              81*
                                ILIM=N11+1
                                DO 12 I=IL1M+10
00234
              824
00257
              83*
                                DEL1(I)=10000.
00240
                                DEL2(1)=10000.
00241
              85*
                            12 HAR(1)=1000.
00243
              86*
                            32 J=H-1
00244
              87*
                                K=H+1
                      DO 23 I=J*K

C *** THE FOLLOWING TEST OFTERMINES WHETHER A HARMONIC IS IN-BAND. IF HARMONIC

C *** N IS IN-BAND* THEN ID(N) IS SET EQUAL TO 1. OTHERWISE IT IS 0.

IF(I*F2T*LT*FA*OR*I*F1T*GT*FB) GO TO 25
00245
              AB*
              89
00245
00245
              90*
00250
              91 *
00252
              92*
                                18(1)=1
00253
              93*
                            23 CONTINUE
             94+
                                IF(IB(H-1).EQ.0) 60 10 26
00255
                       IF(IB(H).EG.O) GD TO 29

C *** IF THE FOLLOWING TES! IS FALSE, THEN ALL THREE HARMONICS ARE IN-BAND IF(IB(H+1).EG.O) GO ID 30
              95*
00257
              96*
00257
00261
              97*
                          300 D1=AMIN1(ABS(DEL1(H-1)),ABS(DEL2(H-1)))
00263
              98*
                                D2=AMIN1(ABS(DEL1(H)),ABS(DEL2(H)))
D3=AMIN1(ABS(DEL1(H+1)),ABS(DEL2(H+1)))
LAL1=-HAR(H-1)-10*SLUPE*ALOG10(D1)
00204
              99*
00265
            100*
            101*
00266
                                CAL2=-HAR(H)-1U+5LOPE+ALDG10(D2)
            102*
00267
            103*
                                CAL3=-HAR(H+1)=10+5LUPE+ALOG10(D3)
002/0
                                1F(CAL1.LT.CAL2) 60 10 24
1F(CAL1.LT.CAL3) 60 10 25
00271
            104*
00273
            105*
00275
            106*
                                HEH-1
00276
            107*
                                DF=D1
00277
            108*
                                60 TD 949
```

Figure III-2. Continued.

```
00300
         109*
                     24 1F (CAL2-LT-CAL3) GO 10 25
         110*
                         UF=U2
00302
         111*
                         60 TO 999
00303
         112*
00304
                     25 H=H+1
00305
         113+
                         UF=D3
                     90 TO 999
26 1F(IB(H+1).EQ.0) GO 10 27
00306
         114*
00307
         115*
                  1F(IB(H).EQ.O) 60 TO 28
C *** BOTH H AND H+1 ARE 1N-BAND
00311
         116*
         1170
00311
         1180
                         11=H
00314
          119*
                          12=H+1
00315
         120*
                         U1=AMIN1(ABS(DEL1(H))+ABS(DEL2(H)))
00316
         121*
                         D2=AMIN1(ABS(OEL1(H+1)) + ABS(OEL2(H+1)))
                 GO TO 200

U *** ONLY H IS IN-BANO

27 IF(IB(H).NE.0) GO TO 999

C *** ALL THREE HARMONICS ARE OUT OF BAND.
00317
         1224
         1230
00317
         124*
00320
         1254
00320
         126*
                         SLOPE=AMINI (N2+M2)
00322
00323
         127*
                         60 TO 300
00323
          128*
                  C *** ONLY H+1 15 IN BANO
                     28 H=H+1
00324
         1584
                         IF(H.GT.N11) H=H=1
UF=AMIN1(AUS(DEL1(H))+ABS(DEL2(H)))
         130*
00325
                  GO TO 999

C *** AN ERROR HAS OCCURRED IF IT IS FOUND THAT DNLY H-1 AND H+1 ARE IN-BAND.

29 1F(IBH+1)-E9.1) RETURN 0
00330
         133*
00330
         134+
00331
         135*
                  C *** ONLY H-1 15 IN-BANO
00331
00343
         136*
                         H=H-1
00334
         137*
                         DF=AMIN1(ABS(DEL1(H-1)).ABS(DEL2(H-1)))
00335
         138*
                          60 TO 999
00335
          139*
                  C *** BOTH H-1 AND H ARE IN-BAND
00336
          140*
                     30 11=H
00337
         141*
                         12=H-1
                         DI=AMINI(ABS(UEL1(H)).ABS(DEL2(H)))
00340
         1420
                    U2=AMIN1(ABS(DEL1(H-1)),ABS(DEL2(H-1)))
200 CAL1=-HAR(11)-10*SLOME*ALOG10(01)
00341
          1439
00342
          144*
00343
         145*
                         CAL2=-HAR(12)-10*SLOPE*AL0610(02)
00344
         1464
                         1F(CAL1.LT.CAL2) 60 10 31
         1470
                         H=11
.00346
          148
                         DF=D1
00347
          149
                         60 TO 999
          150*
                      31 H=12
00351
90352
          151 .
                         UF=02
00353
          1520
                     999 1F(FC-0.) 1000:1000:798
                    998 UO 997 1=H+1+=1
1F((1=1)*F2T=OFF1L2) 996+996+997
          153°
154°
00356
00361
00364
          155*
                     997 CONTINUE
00366
          1560
                     996 IF(1.EQ.H.ANO.CCHNL.EQ.1) RETURNI
00370
          157*
          158*
                          UF=AMINI(ABS(OLLI(H))+ABS(DEL2(H)))
00371
          1590
                          RETURN
00372
00373
          160*
                   1000 IF(CCHNL+E9+1) RETURNI
                         RETURN
00375
00376
          162*
                         END
```

Figure III-2. Continued.

						A C C C C C C C C C C C C C C C C C C C	
00							
OELE TED? OELE TED?						10 - F 10 - C 10	
96							
× ~ 3						* ~* ***	
700		*				000000000000000000000000000000000000000	
1 9 1							
						2	
01577762 01546756 01547022						700 649 667 667 77 77 77 77 77 77 77 77 77 77 7	
01577762 01546756 01547022						00000000000000000000000000000000000000	
	*						
2 4 2							
4.00							
16:50:08							
					E C	T V V V V V V V V V V V V V V V V V V V	
V 70					*	440. C C F 1 L 2 C F 1 L 2 C F 1 L 2 C C F 1 L 2 F 1 F C M M I L K A M M M I L K A M M M I L K A M M M I L K A M M M I L K A M M M M I L K A M M M M M M M M M M M M M M M M M M	
MESSAGE(S) 20 NOV 70 15 DEC 70					. NO II	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
					LOCATION, MAME)	00000000000000000000000000000000000000	
0 *DIAGNOSTIC*						A	
SON 9					ALL	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
OIA					ELA	•	
•						38.	
						92L 92L 92L 95TL1 0F71L1 0F71L1 94 94 18 18 18 18 18 18 18 18 18 18 18 18 18	
	20				IBLOCK, TIPE, MELATIVE	24 24 24 25 25 25 26 26 26 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	
	000				BLO	2	
	EMTRY POINT GGGGG NAME, LENGTH;		H.			SURROUTINE PURER CANEL MINERSON SON SON SON SON SON SON SON SON SON	
	P 0.1	****	IBLOCK: NAME!		NT FUR VARIABLES	00000000000000000000000000000000000000	
	HE.	000304 000028 000000 000317 0001320 000074	90 K		× ×	= = = = = = = = = = = = = = = = = = =	
ATABLE	_				3	2 4 2 3 7 1 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	1
	OCK.	A S O C C C C C C C C C C C C C C C C C C	CES	EXTRAC ALGGIG NEAPES NERN3S	<u> </u>	11 4 4 7 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	•
STMBO	JWE'N		REN	NEAD THE READ	SHE		
vo ≃	E P(EXTERNAL REFEREN	2 0 0 7	ASSIGNHE	4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
CODE	SURROUTINE POSTON STOKAGE USED	000000000000000000000000000000000000000	AF	0001 0010 0011 0012		K X -KK -NA*	
00	B R D I		1ER)		STORAGE		
x x	SU		اله ×		5		1
HAKM						000	

```
INTEGER EATHAC
00104
                            COMMON/RBLOCK/A1321.F1F.BR.B121.N).F1H.F2R.K1.KS.LOP.(.F).0(3).H2.
00107
             A .
00107
              7.
                            *E1171,FA+FB, KHL11401
                            COMMON/TOLOCK/4(33),B]T.F])))T36,NI,F]T,FZT,KH(B),NZ,G)3),PRT,
*GG(Z),TAU,R]3);IPCONP,FC,FO,RR14),BZT,NII,TBL)14)
*COMMON/PBLOCK/A,1)91,LP:BB(Z):M:PBL]37)
00110
              8.
00116
              9.0
00111
            10.
                    C *** THIS CONHON BLOCK IS GINERATED BY OFR
CONHON /ZHLOCK/CCHNL,PC,LF1,LF2,LF3,OF,OFS,BH,INANE,F1P,F2P,OF),
00111
            110
03112
                           **OF2.0F3.0F4.0F5.0F6.0FF1L1.0FF1L2.P1
OATA 1P/1HP/1P1/1HC/
OATA p1/3.1415947/
1PULSE=EXTRAC11T3A.11
            13.
00113
            14.
00116
            15.
            160
05120
            170
                             JPULSE . EXTRAC1 1734.21
00121
                    PC=0.

IF)1PCOHP.NE.1P1) GO TO 10

C ••• THE EQUIPHENT IS PULSE COMPRESSION
            16.
00123
            190
00123
            2n .
                         1F1CCHNL+NE+1) GO TO 90
1F18H+BR+TAU/817-1+1 30:999+999
30 PC=LU+ALOGIOIBH+BR+TAU/8LT1
00125
            21 .
00127
            22.
             23.
00133
            24 .
                             60 10 999
                         90 [F(B)1/2-LT-1/1P]-PRT1) 40 TO 91
00134
            25 .
                             OPC=10-ALOG10181T+TAU-1PRT/TAU1++P1+(2/(PL+8)T+PHT)1++NZ1
00136
             260
                             60 10 92
00137
             270
                         91 OPC=10+ALOG10161T+TAU+12/1P1+B1T+1AU11++P1)
00140
            2 ...
                         72 1F18R+TAU=1+) 73.73.74
73 PC= 10+ALOG1018H+TAU) + DPC
00141
             29 .
             30.
                         60 TO 999
74 PC= 10+AL0610(8R+TAU/Z) + 0PC
             31.
00145
00146
             32.
                         GO TO 999
10 IF(IPULSE-NE-1P-AND-JPULSE-NE-1P) GO TO 40
00147
                     C *** THE EQUIPMENT 15 PULSED

IFICCHNL+NE+1 1 GO TO 20

IFIBR+TAU-1+) 50.777.977
             35 .
00150
00152
             37 .
00154
                         50 PC=20+AL061018R+TAU1
00157
             35 .
                         60 TO 999
20 1F(BR+TAU-1+) 60+A0+70
00140
             39.
             40.
                         40 PC=10.ALOGIO(BH.TAU)
00164
             41.
                              60 TO 999
00165
                          70 PC=10+AL061018R+TAU/21
00166
             43.
00167
             440
                             60 TO 999
                     C . * THE EQUIPMENT IS NEITHER PULSED NOR PULSE COMPRESSION
             450
                         40 1F(CCHNL+HE+1) 60 TO 999
1F18H=8)T1 80,777,777
00170
             46.
             470
00172
             48.
                         #0 PC=10+AL061018R/81T1
                        999 RETURN
0017A
             49.
00177
            50 .
                             END
```

Figure III-2. Continued.

ESD-TR-70-286 Appendix IV

APPENDIX IV

AVPAK PROGRAM

The flow diagrams and FORTRAN V program listing for the overall AVPAK interference prediction program are contained in this Appendix. The flow diagram is shown in Figure IV-1, and the program listing is shown in Figure IV-2.

Figure IV-1. AVPAK Flow Diagram.

Figure IV-1. Continued.

60000000000000000000000000000000000000	040401 000401 000401 000631 0001334 001334 001413 0	1990F 220L 220L 340L 340L 540L 650L 650L 650L 650L 650L 670L 780L 780L 780L 780L 780L 780L 780L 7		000324 000417 0000417 0000647 000747 0001767 001150 00150	4 200L 7 240L 2 350L 7 350L 7 400L 6 5056 6 5056 6 356 6 356 6 356 6 351 8 101 8 111 8 111 9 111 9 111 9 111	00000000000000000000000000000000000000	0000343 0000455 0000655 001001 001101 001514 001514 000010 037207 000010 037204 000010	210. 320. 320. 360. 410. 410. 640. 640. 640. 640. 670. 870. 87. 110. 110. 110. 110. 117. 117. 117.	00001 00001 00001 00001 00001 00000 00000 00000 00000 00000 00000 0000	0000362 0000703 0000703 001010 00101160 001160 0016247 002473 0002737 0002737 000000 037204	2224 3324 3324 3334 4234 4234 4236 527 7104 7104 7104 7118 7118 7118 7118 7118 7118 7118 711		000051 000051 000051 001035 001103 001045 001045 001045 0010501 0000501 000744 0007744 0007744 0007744 0007744 0007744 0007744	22246 22701 2701 5701 5701 5736 5736 5737 5737 5731 5731 5731 5731 5731 5731
0000	037235	LTRANI	0000			0000	037220	_	0000 R	037231	OFREJ	0000	0000000	Pat
0000	037232	P.I.	0000	4.3		00000	032274		0006 1	200000	RAMIT	9000	000012	a a
0 0	0000000	RX TCOUP	000	×		0000	043263		00000	037230	SI	0000	0000000	7.5 1.6

DIMENSION IX(51,29). HX (50,20). IIX(50,29). IIR(67). CULL(5,2500)
INTEGER RANT-EPR.PTEST.FXTHAC, TOTAL (50,50)
COMMON/TBLOCK/TBL (67). PRICOK/FRIC (57). PRICOK/PLL (23).
COMMON/CLCOMMON/FREQ.DIST(2). ANGLE (2). ANTHT (2). HANT (2).
FNB.RB.RB.BULK, CUNEFFREE TCOUP. KERR.
EQUIVALENCE (TX(1.1). ITX(1.1). (TRL (1). ITH(1).)
EQUIVALENCE (11.1+1). ITX(1.1). (TRL (1). ITH(1).)
DATA IBLAH.IP.1A.1). (IRZ.P2). (PLAIK.IRLAN). (ERP.KERR.)
DATA IBLAH.IP.1A.1. IHP.1HA.IHP.1HA.IHP. REAL AND CHECK, TRANSMITTER DATA FORMAT(2(12.3x),2(F6.0.4X))
IF(NT.LT.1)60 TO 410 READIS-10003:1T-11P-FNR-PR CALL INTRUP(0) *KITE(6+1005) US 400 I=1+NI FURNAT(1H1) 1005 1000 000101 000105 001005 001005 00100 00101 00101 00101 00105 00105 00105 00105 00105 00105 00105

Figure IV-2. AVPAK Program Listing.

```
00171
00172
00175
           20*
                         NHARM=ITX(K+21)
IF(TX(K+3))2Iu+2IU+25
           260
                      25 1F(TX(K+4))22U,220.35
00200
           294
                      35 IF (Tx(K+4)-TX(K+3))230+50+50
00203
           30*
                      50 IF(TX(K+5))240+240+55
00206
           31+
                      55 IF(TX(K+6))250+250+60
                      60 IF(Tx(K+6)-TX(K+5))260+65+65
65 IF(Tx(K+7)-LT,20+)GO TO 270
IF(Tx(K+8)-LT,20+)GO TO 280
           32.
00211
80214
           34+
00216
00220
           35*
                          IF (NHARM-1)206.73.68
                      68 DO 70 J=2+NHAR**
70 IF(TX(K+J+20).LT.0.)GO TO 290
00223
           30*
           37+
00226
                     70 IF (TX(K+15))300+87+80
80 IF (TX(K+15))310+310+55
85 IF (TX(K+16)+LT+TX(K+15))60 TO 320
87 PTEST=EXTRAC((TX(K+11)+1)
00231
           36*
           39+
00234
           40+
00237
00241
00242
           42*
                          IF (PTEST - NE - IP) GO TO 115
                          IF(ITX(K:11):Eu-IdLANK)GO TO 110
IF(ITX(K:12):Eu-IBLANK)GO TO 107
IF(ITX(K:12):HE-1C)GO TO 340
00244
           43.
00246
           44.
           45#
00250
           400
                          IF (TX(K.13)-TX(K.14))360.360.105
00252
00255
                     105 IF (TX(K+14))300+360+107
                     107 IF(TX(K+13))350+350+110
00260
           48.
                     110 IF(ITX(K,12).NE.1C)GO TO 115
IF(TX(K,5)*TX(K,13)=1.)365,365,115
00263
           494
           50+
00265
00270
           514
                     115 FREQ=(TX(K+3)+TX(K+4))/2.
00271
                          IF (FREQ-30.) 370.390.390
00271
           53*
00271
           54+
                  C ..
                          TRANSMITTER DATA NOT GOOD. WRITE ERROR MESSAGES AND SKIP THIS EQUIPMENT.
00271
           55*
80274
           56*
                     200 WRITE (6.1200) ITX (K.1). ITX (K.2)
                    1200 FORMAT( OTHANS-ITTER ".246." HAS BEEN SKIPPED. ")
00300
                          WRITE (6:1205) HHARM
00301
           58+
           59*
                    1205 FORMAT(10x30HILLEGAL NUMBER OF HARMONICS = +11)
00304
                          GO TO 400
00305
           60*
           61 •
                     210 WHITE (6:1200) ITX(K:1) - ITX(K:2)
00306
00312
           62#
                          WRITE(6.1210) 1x(K.3)
                    1210 FORMAT(10X31HTX PRI FREQUENCY IS IN ERROR: +FR-0)
00315
           63+
           64*
                          GO TO 400
00316
           65#
                     220 WHITE (6:1200) | TX(K:1) : | TX(K:2)
00317
00323
                          WRITE (6,1220) 1x(K,4)
                    1220 FURMAT (10x31HTx SEC FREQUENCY IS IT ERPOP! +FR.0)
00326
           67+
00327
           66*
                          GG TO 400
                    230 WHITE (6:1200) ITX (K:1):1TX(K:2)
00330
           69.
           70+
                          WRITE (6:1230)
00334
00336
           71+
                    1230 FORMATCIOX43HTX SEC FREQUENCY LESS THAT TX PRI FPEQUENCY)
00337
                          SO TO 400
           72.
                     240 WHITE (6:1200); [X(K:1): [TX(K:2)
           73.
00340
                          WRITE (6:1240) T, (k:5)
00344
           74+
                    1240 FORMAT(IUX29H), PHI BANDWINTH INCOFRECT: .FA.0)
           75*
00347
                          60 10 400
           76.
00350
           77*
                     250 #RITE(6:1200) [ (X(Y:1):17*(K:2)
00351
           700
                          *KITE (6+12:0) 1 . (* ++)
00355
                    1250 FORMAT (TUX29HT: SEC HA! OWINTH INCOMPRECT: .FR. n)
00300
00301
                          60 TO 400
```

Figure IV-2. Continued.

```
00362
          81+
                   200 WKITE (0:1200) 11X(K:1) : [TX(K:2)
00366
          82.
                        WRITE (6+1260)
                  1260 FORMAT (10x36H) x SEC BAHOWIDTH LESS THAM TX PRI BW)
          83+
                   GO TO 400
270 WHITE (6:1200) 1TX (K:1): ITX (K:2)
00371
          84 .
00372
          85*
00376
                        WRITE (6:1270)
          80*
00400
          87.
                  1270 FORMAT (10X29HTX PRI SPEC FALLOFF TOO SMALL)
                   280 MHITE (6.1500) IIX (K.1) . IIX (K.5)
00401
          88*
00402
          89+
                  #RITE(6+12AD)
1280 FORMAT(10x29HTx SEC SPEC FALLOFF TOO SMALL)
00406
          90.
          91+
00410
          92+
                        GO TO 400
00411
          93+
00412
                   290 WAITE (6.1200) 17X(K.1) . ITX(K.2)
00416
                        WKITE (6,1290) J. TX(K, J+20)
00422
          95+
                  1290 FORMAT(10x15HmARMONIC LEVEL .II.29H MUST BF GREATEP THAN ZERO: .
00422
          90*
                            F5.0)
00423
          97+
                        GO TO 400
                   300 WRITE(6:1200);TX(K:1):TTX(K:2)
WRITE(6:1300);TX(K:15)
          98+
00424
          99+
00430
         100+
                  1300 FURMAT(10x31HF1LTER LOWER LIMIT INCORRECT: +F8.0)
00433
00434
         101+
                        GU TU 400
00435
         102+
                   310 WAITE (0:1200) ITX (K:1) : ITX (K:2)
                  WRITE(6:1310)TX(K:16)
1310 FORMAT(10X31HFILTER UPPER LIMIT INCORRECT: +FR:0)
00441
         103+
00444
         104+
                   90 TO 400
320 WRITE(6:1200)1TX(K:1):1TX(K:2)
00445
         105.
00446
         106*
00452
         107#
                        WRITE(6:1320)
                  1320 FORMAT(10x34HF1LTER UPPER LIMIT LESS THAN LOWER)
00454
         106*
00455
         109*
                        GO TO 400
                    340 WRITE(6:1200)1TX(K:1):ITX(K:2)
         110*
00456
                        WK1TE (6-1340)
         111+
00462
                  1340 FORMAT(10x37HPDLSE COMPRESSION INDICATOR INCORRECT)
         112*
00464
00465
         113+
                        60 TO 400
         114*
                   350 MKITE(6.1200) ITX(K.1) . ITX(K.2)
00466
                  WKITE (6+1350)
1350 FORMAT(10X37HHULSE WIOTH MUST BE GREATER THAN ZERO)
00472
         115*
         116*
         117+
                        Gu Tu 400
00475
                   360 WKITE (0.1260) LTX(K.1). 1TX(K.2)
         1100
00476
                        WRITE (6 . 1360)
         119*
00502
                  1360 FURMAT(10X46HPHLSE RISE TIME MUST BE GT O AND LT PHLSEWIDTH)
00504
         120+
         121+
00505
                        GO TO 400
         122+
                   305 WRITE(6:1200)17X(K:1):17X(K:2)
00506
00512
         123+
                        ##1TE (6:1365)
                  1365 FORMAT(10473H FP1 HANOXIDTH * PULSEW10TH MUST BE GT 1 FOR PULSE CO
00514
         124*
                   .MPRESSION EQUI-MFNTS)
GO TO 400
370 WRITE(6.1200)1TX(K.1).TTX(K.2)
         125+
00514
         126+
00515
         127+
00516
         120+
                        WHITE (6:1370)
00522
         129+
                  1370 FURMATCIOX31HT ANSWITTER EPEQUENCIES TOO LOW!
0U524
00525
         13u*
131*
                        60 TO 400
                   390 K=K+1
00526
         132+
                        IF (K. 0T. 501GO TO 410
00527
                   4 16 CONTINUE
00531
         133*
00533
         134+
00534
         135+
                        IF (K.ES.6)60 (* 41
```

Figure IV-2. Continued.

```
00536
          136*
                           WRITE (6+1403)
                    1403 FORMAT(1H1>50x+TRANSMITTERS WITH GOOD DATA*/*OTRA:/SMITTER LOW FRF ** 9 H1 FREW Bw1 HW2 SF1 SF2 PT GT MT PCI PW PRT LO ** W FILT: H1 FILT Z-DIST HEIGHT ANGLE R H*/14X6(1H*)** (MHZ)** 6(1H*)** ** ... (KHZ)... ** (DB/DFC)** ... (DB)** ... (US)**.
          137+
00540
00540
          138+
00540
          139+
00540
          140+
00540
          141+
00541
          142*
                           DO 405 I=1.K
                    WRITE(6:1405);TX([:1):TX([:2):(TX([:J):J=4:10):TX([:1]:TX([:12:
.): (TX([:J):J=13:19):TX([:20):TX([:21);
1405 FORMAT(1X2A6:2F9:0:2F7:0: 4F6:0: A3:1XA1: F5:1:1XF4,2:2F9:0:F8.
00544
          143+
          144#
00544
00564
          145+
          146*
                         .1.F7.2.3XF5.0.2(1XI1))
00564
          147+
                      405 CUNTINUE
00565
00567
          148+
                          WRITE(6+1415)
00571
          149+
                     1415 FORMAT('/', 25x, TRANSMITTER HARMONICS'/21X1H2, 10X1H3, 10X1H4, 10X1H5,
                               10x1H6+10x1H7+10x1H8+10x1H9//)
00571
          150*
                          DO 420 I=1+K
NHARM=ITX(I+21)
00572
          151 *
00575
          152+
00576
          153+
                           IF (NHARM+LE+1)GO TO 420
                       NHARMENHARM+20
00600
          154+
00601
          155+
                           WHITE(6.1420) | TX(1.1) . | TX(1.2) . (TX(1.3) . J=22.1.HAPM)
00611
          156*
                    1420 FORMAT(1H +2Ab+8F11+0)
                     420 COLITINUE
          157+
00612
          158+
                           GO TO 500
00614
          159+
                      410 WRITE (6:1410)
00615
                     1410 FORMAT(34HONUMHER OF TRANSMITTERS IS ILLEGAL)
00617
          160+
          161+
                          GO TO 990
00620
                      500 L=1
00621
          162*
          163+
                   C**
00621
00621
          164+
                          READ AND CHECK RECEIVER DATA
00621
          165*
00622
          166*
                           IF (NH.LT.1)GO TO 910
          167*
                           WRITE (6+1005)
00624
00626
          168*
                           Du 710 I=1+NR
                           READ(5+1500)ID1+ID2+(Rx(L+J)+J=3+12)+LOP+(RX(L+J)+J=14+20)
00631
          169*
                    1500 FORMAT(2A6.2(1XF8.0).1XF6.0.3(1XF4.0).2(1XF3.0).2(1XF8.0).1XA1/
00646
          170*
          171+
                               F6.0.1XF5.0.1XF4.0.1XF1.0.1XF5.0.2(1XF4.0))
00646
                          IF (HX(L+3))600+600+505
          172*
00047
                      505 1F (RX(L+3).GT.99994.1G0 TO 600
          173*
00652
00654
                          1F (RX(L+4))610+610+510
          174+
00657
          175+
                      510 *F(RX(L+4) *GT.99999*)Gn TO 610
00661
          176*
                           IF (HX(L+4).LT. (L+3)) 00 TO 620
                           1F (HK(L+5))630-630-515
          177+
00663
                      515 IF(RX(L+6))640+640+516
00<sub>0</sub>66
00671
          178+
179+
                      516 IF(RX(L+6)-GT.99999-)GC TO 640
00673
          180*
                           IF (RK(L+7) -LT-20)GO TO 650
          181*
                           1F (HX (L+8) .LT.20)50 TO 660
00675
                           IF (RX(L+9).LT.0)GO TO 770
IF (RX(L+10).LT.0)GO TO 680
IF (RX(L+11))625+685+520
00677
          182+
00701
          183*
          184+
00703
                      520 IF(RX(L+11).GT.99939.)GO TO 685
          185*
00706
                           IF (kx(L+12))69 +1.93+525
00710
          186+
          187+
                      525 IF (RX (L+12) - 61 - 94999 - 160 TC 690
00715
                           IF(RX(L+12)-PA(L+11))605+530+530
00715
          188*
                      530 IF (LOP-EG-IA)C3 TO 540
IF (LOP-FG-IB)US TO 540
00/20
          1890
00722
          190+
```

Figure IV-2. Continued.

```
00724
         191+
                       IF (LOP.NE.IC) GO TO 697
00726
         192+
                   540 RX(L.1)=RIDI
         193+
                       RX(L,2)=RID2
00730
         194+
                       RX(L:13)=RLOP
         195+
                       GO TO 700
00731
         196*
00731
                       RECEIVER DATA NOT GOOD. WRITE ERROR MESSAGES AND SKIP THIS EQUIPMENT.
         197+
                C++
00731
         198+
                С
                   600 WRITE(6.1600) IDI. ID2
00732
         199+
                  1600 FORMAT('ORECEIVER '.2A6,' HAS BEEN SKIPPED.')
00736
         200+
00737
         201+
                       WRITE(6:1605)
                  1605 FORMAT (10X46HRX PRI FREG MUST BE BETWEEN ZERO AND 99999 MHZ)
00741
         202*
                   GO TO 710
610 WRITE(6.1600)[()1.102
00742
         203+
00743
         204+
00747
         205+
                       WRITE(6:1610)
                  1610 FORMAT(10X46HRX SEC FREQ MUST PE BETWEEN ZERO AND 99999 MHZ)
00751
         206*
00752
         207+
                       GO TO 710
                   620 WRITE(6:1600) ID1: ID2
00753
         208+
                 WRITE(6,1620)
1620 FORMAT(10X33HRX SEC FREQ LESS THAN RX PRI FREQ)
00757
         209+
00761
         210+
                   GO TO 710
630 WRITE(6:1600)[01:102
00762
         211+
00763
00767
         213*
                       WRITE (6, 1630)
00771
         214+
                  1630 FORMAT(10x38Hkx BANDWIDTH MUST BE GREATER THAN ZERO)
                  60 TO 710
640 WRITE(6,1600)[D1,102
80772
         215*
00773
         216+
                       WRITE (6.1640)
00777
         217+
         2164
                  1640 FORMAT(10X50HINTERMEDIATE FRED MUST BE GT ZERO AND LE 09999 MHZ)
01001
                  GO TO 710
650 #RITE(6,1600)[[;1,102
         219*
01003
         220+
01007
         221 *
                       WRITE (6:1650)
         222*
                 1650 FORMAT(10x33Hxx PRI SPEC FALLOFF MUST PE GF 20)
01011
01012
         223*
                       GO TU 710
                  $01.1CI(0091.9)3118# 099
         2240
01013
         225*
01017
                       WRITE (6:1660)
                 1660, FORMAT(10X33HRX SEC SPEC FALLOFF MUST PE GF 20)
         226*
01021
01022
         227+
                       GO TO 710
01023
         2284
                  670 WRITE(6:1000)1:1:1:102
01027
         2240
                       WRITE (6:1670)
         230+
                 1670 FURMAT(10x27HIMAGE LEVEL MUST PE GE ZERO)
01031
                  GU IO 710
660 WRITE(6:1600)[[]1:ID2
         231 *
01032
         232*
01033
         233+
01037
                       WRITE (6+1680)
         234+
                 1680 FORMAT(10x30HSPURIOUS LEVEL MUST BE GE ZERO)
01041
                  60 TO 710
685 WRITE(6:1600)[DI:102
01042
         235*
01043
        236*
01047
         237*
                       WRITE (6:1685)
01051
         238+
                 1685 FORMAT(10X51HKX LOWER OPER FRED MUST BE GT ZERO AND LE 99999 MHZ)
                       GO TO 710
01052
        239*
         240.
                  690 WRITE (6:1600) 1:1:102
01053
01057
         241+
                       WRITE (6:1690)
01061
         242*
                 1090 FORMAT(10X51HiX UPPER OPER FRED MUST BE GT ZERO AUD LE 99999 MHZ)
01062
         2430
                  GG TG 710
695 WRITE(6:1600)[:,1:ID2
01063
        2444
        245+
                       #KITE (6:1695)
01067
```

Figure IV-2. Continued.

```
01071
                    1695 FORMAT (10x37HKX UPPER OPER FRED LT LOWER OPER FREQ)
          2464
          247#
                     GO TO 710
697 WRITE(6,1600)101,102
WRITE(6,1697)
01072
01073
 01077
          2490
 01101
          250+
                    1697 FORMAT (10X44HLOCAL OSCILLATOR POSITION MUST BE A+ H+ OR C)
 01102
          251+
                          GO TO 710
01103
          252+
                     700 L=L+1
01104
                          IF (L.GT.50)GO TO 910
          2530
01196
          254+
                     710 CONTINUE
01110
          255+
                          L=L-1
 01111
                          1F(L.LE.0)60 TO 910
                    1F(L.LE.U)60 10 910
WRITE(6:1710)

1710 FORMAT('/':50\)'RECEIVERS WITH GOOD DATA'/'O RECEIVER LOW FREO H
.I FREQ BW IF SF1 SF2 IM LEV SP LEV LOW SRL H1 SRL LOP
. Z=D1ST HT ANG R SENS GAIN S/I'/I3X'.....(MHZ)..... (IN) (
01113
          257+
01115
          258+
01115
          259+
01115
          260.
                         .KHZ) (MHZ) .(DB/DEC).
.FT) (DEG)
01115
                                         261*
01116
          263+
                          Do 715 I=1.L
M=RX(1.17)
01121
          264+
01122
          265+
                          R1D1=RX(1.1)
          2664
                          RID2=RX(1.2)
01124
          267+
                          RLOP=RX(1,13)
          268+
                     715 WRITE(6:1715) I()1:ID2:(RX(I:J):J=3:I?):LOP:(RX(I:J):J=I4:16):
01125
          2690
                              M. (RX(I.J).J=18.20)
01150
          270*
                    1715 FORMAT (1X2A6, F9.0.
                                                            3F6.0.3(1XF6.0).2F9.0.IXA1.F7.1.F6.2.
01150
          271*
                              F6.0.1X11,3F7.1)
01150
          2724
01150
          273*
                  C**
                        BEGIN ANALYSIS
01150
          274.
01151
          275*
                         NUULL=0
01152
          276*
                          NWHITE=3
01153
          277*
                         WRITE (6.1740) ILT. NR. FNB. RB
          2780
01161
                   1740 FORMAT('1 NUMBER OF TRANSMITTERS
                                                                    NUMBER OF RECEIVERS
01161
          279*
                        .E LOCATION(INCHES) KNIFF EDGE HEIGHT(FEET) // IIX12 . 21X12 . 22XF7 . I
01161
          280*
                             +20XF7.21
          281 .
                         FNB=FNB/12.
01163
          282*
                          WHITE (6+1795)
                        FORMAT( &SHOEDUIPMENTS CAUSING POSSIBLE INTERFERENCE (POWER I
•N GREATER THAN RECEIVEP SENSITIVITY))
                   1795 FORMATI
01165
          283*
01165
          284*
01166
          285*
                         WRITE (6:1809)
01170
         286*
                         DU 800 I=1.K
01173
          287*
                         WRITE (6: 1793)
01175
                   1793 FURMAT(1H )
         288*
01176
         289*
                         NWRITE=NWRITE+1
01177
         290#
                         101=ITX(1.1)
         291+
01200
                         (S+I)XII=SCI
01201
         292 •
                         CALL MOVECH(ID1.1.2.1TPAN.1)
ToL(38)=Tx(1.3)
01202
         293*
01203
         294*
                         TUL (39)=TX(1+4)
01204
         295*
                         Tal (34)=Tx(1.5)/1000. .
01205
         29p*
                         THE (06)=TX(I+6)/I000.
         297*
01206
                         TOL (37)=TX(1.7)
01207
         298*
                         TOL (48)=T) (1.6)
01210
         299#
                         IIa(30)=IIx(1,11)
         30u+
                         IT-(59)=ITx(1,12)
```

Figure IV-2. Continued.

```
301*
                            TBL (55)=TX (1+13)
01212
                           THL(52)=TX(I+14)
THL(60)=TX(I+15)
01213
          302*
01214
          303*
                           THE (61)=TK(1,16)
01215
          504*
                           1TB(67)=11X(1,21)
          305*
01217
                           FREK=(THL(38)+THL(39))/2.
          506*
01220
          507*
                           U15T(1)=TX(1,17)/12.
                           ANTHT(1)=TX(1,48)
ANGLE(1)=TX(1,19)
RANT(1)=ITX(1,20)
01221
          308*
          309*
01222
          310*
01223
          311*
                           PT=TX(1.9)
01224
                           GT=TX(1+10)
01225
          312*
          513*
                           UO 750 M=22.29
01226
01251
          314*
                      750 TBL(M+18)=TX(1+M)
01233
          315*
                           UO 800 J=1+L
          316*
317*
01236
                           R1=RX(J+1)
                           R2=RX(J+2)
01237
01240
01241
01243
          318*
                           CALL MOVECH(1R1+1+2+1REC+1)
1F(ITRAN-EU-IREC)60 10 800
                           RBL (38)=RX (J+3)
          320+
01244
           321+
                            RUL (39)=RX(J/4)
01245
          322*
                           RBL(34)=RX(J.5)/1000.
                           RBL (33)=RX(J+6)
RBL (37)=RX(J+7)
          323*
01246
          324*
01250
          325*
                           KUL (48)=RX(J.8)
01251
           326#
                           RBL (40)=RX(J.9)
01252
          527+
                           RBL (41)=RX(J:10)
                           RUL (66)=RX(J:11)
          328*
01253
                           RBL(67)=RX(J:12)
01254
                           RBL (42)=RX(J,13)
01255
          350*
          331*
                           D15T(2)=RX(J,14)/12.
01256
01257
          332*
                            ANTHT (2)=RX(J, 15)
01200
           333*
                           ANGLE (2) = RX(J, 16)
01261
          334*
                           RANT (2)=RX(J+17)
01262
           335*
                           RS=RX(J:18)
                           6H=RX(J:19)
          336*
01263
01264
                           51=RX(J+20)
01265
          338*
                           CALL OFR
           339*
                            OFREJEPHL (20)
01256
01267
           340*
                           HARM=PBL (23)
01270
          341*
                           FREG=FLUAT(NHARM)+FREK
                           CALL CLUSS
P1=S1+PT+UFREJ+GT+GR*TCOUP
01271
           342#
01272
          343*
01273
           344*
                            1F (P1-R5)760,760,780
01276
           345+
                      760 NCULL=NCULL+1
                           CULL(1) NCULL) = ERR

CALL PACK(CULL(2) NCULL), 1+J+50, N; AKM)
CULL(3, NCULL) = OFREJ
CULL(4, NCULL) = TCOUP
          346*
01277
01500
          548*
01301
01302
           549*
01303
          350*
                           LULL (5. NCULL) = BULK
01304
           351*
                           60 TO 800
                     780 WRITE(6:1780)101:102'1R1:1R2:S1:0T'UFREJ,6T:GR:TCOUP:PI:RS
1780 FORMAT(2(1X:2A6):2X4(F5:0:" + "):F5:0:" - ":F5:0:" = ":F5:0:"
01305
           352*
          353*
01323
01323
           354 4
                                8XF5.01
                           CALL MSG(NHARM)
          355*
```

Figure IV-2. Continued.

```
01325
           356*
                            XI=(L+I)JATOT
01326
           357+
                            NWRITE=NWRITE+1
ID1=IBLANK
01327
           358*
01330
           359*
                             102=IBLANK
                             LE (NWRITE . LE . 45) GO TO HOO
01331
           360*
           361 *
362 *
363 *
01333
                            IUL=ITX(I.I)
01334
                            ID2=ITX(1.2)
01335
                            WRITE (6+1005)
01337
           364+
                            WRITE (6.1795)
01341
           365+
                            WRITE (6.1809)
           366*
367*
01343
                            NWRITE=0
01344
                       800 CONTINUE
01347
01351
           368*
                            1F (NCULL . LE . 0) 60 TO 821
           369±
370±
                            WRITE (6:1800)
01353
                     1800 FORMAT(1H1+12X62HCULLED EQUIPMENTS (POWER IN IS LESS THAN RECEIVER
01353
           371+
                          • SENSITIVITY))
WRITE(6:1810)
01354
           372*
                     #MITE %/101U/
1809 FORMAT(*OTRANSMITTER RECEIVER

** GR + LP = PI >

1810 FORMAT(*OTRANSMITTER RECEIVER

** GR + LP = PI <
01356
           373+
                                                                             S/I + PT +
           374*
375*
376*
01356
                                                                     RS . . . . . . REMARKS*//)
S/I + PT + LF
RS . . . . . REMARKS*//)
01357
01357
                            + GR -
NWR1TE=0
           377+
81360
01361
           378*
                            DO 820 M=I NCULL
01364
           379*
                            ERR=CULL(1.M)
01365
           380+
                            CALL UNPACK (CULL (2+M) + I + NHARM)
01366
           381+
81367
                            I=1-J+50
           383+
81370
                            RID1=RX(J.1)
01371
                            RID2=RX(J,2)
BULK=CULL(5.M)
01372
           385*
                            PI=BX(J+20)+TX(I+9)+CULL(3,M)+TX(I+I0)+RX(J+19)-CULL(4,M)
1F(ITI.NE.ITX(I+1))60 TO 805
1F(IT2.NE.1TX(I+2))60 TO 805
01373
           386*
01374
           387*
01376
           388*
01400
                      GO TO 810
805 NTRAN1=ITX(I+I)
NTRAN2=ITX(I+2)
           389*
01401
           390+
01402
           391 *
01403
           392*
                            1T1=NTRAN1
01404
           393+
                            IT2=NTRAN2
01405
           394+
                            WHITE (6:1793)
01407
           395*
                            NWRITE=HWR1TE+1
                      GO TO BIS
BIO NIRANI=IBLANK
NIRAH2=IBLANK
01410
           396+
01411
           397*
01412
           398*
01413
           399+
                      815 WRITE(6+1760):.TRAN1+NTPAN2+ID1+ID2+RX(J+20)+TX(I+9)+CULL(3+M)+
01413
          400+
                                TX(I,10), RX(J,19), CULL(4,M), PI,RX(J,18)
01431
          401+
                           CALL MSG(NHARM)
          402*
01432
                           NWR1TE=NWRITE+1
01433
          903+
                           IF (NWRITE.LT.45)GO TO A20
          404+
                            WRITE (6.1500)
01437
          405+
                           WRITE (6 . 1810)
01441
          406*
                           NWRITE=0
01442
          407+
                           TTI=IBLANK
01443
          40A+
                           1T2=IHLANK
                      820 CONTINUE
01444
          404#
01446
          410*
                      621 MRITE (6.1620)
```

Figure IV-2. Continued.

Figure IV-2. Continued.

ENTRY POINT 000077

SUBHOUTINE MS6

STORAGE USED (BLOCK) NAME: LENGTH)

000103 000001 000000 000000

00002

EXTERNAL HEFERENCES (BLOCK, NAME)

NERH2% NWDUS NIO2% NERR3%

00004

	4	•																			
	000031 1/924 000036 /88L	No.																			
	031	2																			
	3 3 3	8																			
	0000													•							
	56	5																			
	la 1	_																			
	000023 1788F 000030 786L																				
	023	2																			
	000																				
	0000	2																			
	000	5																			
C.	h .	,																			
¥ V	17864 784L				•																
NOT	0000 000015 1786F 0001 000022 784L																				
OCAT	200	3		R.			~														
ت	2 - 7	2		PRE			ò						:			:					
ATA	0000			1(3)	FRH		HOLE			CE!			FUED			IGHT			¥		
REL				X * BU	8) .K		OT A			CLO			EXCL			D IE	HAKH		COUP		
JOHAGE ASSIGNMENT FOR VARIABLES (BLOCK, TTPE, RELATIVE LOCATION, NAME)	84F			COMMON/CLCOMM/DUMMT(11),COUPK+BUM(3)+KERR	60 TO(790,782,784,780,790,788),KENH		FURMATION 109X RAISED ANT NOT ANGLE U.)			FORMATI ** * 109X ANTENNAS TOO CLUCE *)			FORMATI'+' 109X'CURVE HANGE EXCEFUED")			FORMATI'+' 1109X'BAD BULK HEAD HEJGHT!	IF (NHARM. GT. 1) WKITE (O. 1792) NHARM		IF (COUPK - 6T - 0 -) WRITE 16 + 1794) COUPK	6	
Y .	782		-	11)	0179		LD A			MAN			E KA			BULK	0,17	111)	1601	1F5.	
BLOC	00000/ 1764F 00001" 782L		SUBROUTINE MSG (MHARM)	MHT	4178		RAIS			ANTE			CURV			BAD	ITE	FORMAT(1H++94X4HH = +11)	RITE	FORMAT('+' , 100X'LK=''F5.0)	
E5-			S6 (N	3	2,78	^	, x60		_	,×60		_	,×60		_	4×60	1) WK	H#X#	W(. 0	. X 00	
IABL	0000		NE R	COM	01 78	1782	74.4	٥	1784	1014	0	1786	700	0	1788	2000	.6T.	60+H	.6T.	2000	
X >			DUT	2×6	2410	BRITE (6,1782)	1110	GO TO 790	WHITE (6+1784)	TIL	60 TO 790	MHITE (6+1786)	ATIO	60 TO 790	WH 1 TE (6+1788)	ATL	TARM	ATILL	SUPK S	ATE	
5	W #	.~	VUBR	MHO	9	IR 1 TI	ORM	30 T	WALT	ORM	2	HIT	WHO.	J.	IR 1T	ORM	N) JI	-OHM	IF (C)	ORM	FNO
FNT	1782F 1794F 7401	X X X	,,									_			788 1			_	-	1 164 1	
2	000000	017				_	1		_	17		_	7		_	-	_	7		-	
¥S8	000		*	5#	3*	* *	*0	*9	1.0	8*	*6	*0	1.	5.	3*	* *	2*	• 0	10	8.	*6
X Y OF	00000	1 50										-	-	~	-	-	-		-	1	-
210	000	88	101	103	104	105	101	110	111	113	114	115	117	120	121	123	124	150	151	155	00156
			00	00	00	00	8	00	00	00	00	00	00	00	00	00	00	00	00	00	00

Figure IV-2. Continued.

APPENDIX V

SABRELINER FIRST LEVEL ANALYSIS OUTPUT DATA

The output data obtained from automated portion of the first level analysis conducted during this study are shown in this Appendix.

					-	KANSALI	O. W.	IRANSATITERS WITH COMB DATA	AIA							
THANSMITTER	LOW FREG HI	HI FREG	R*1		ςF1 SF2(ΟΒ/DEC)	SF2 DEC)	PT	PT GT WF PCI PW PRT	M I		LOW FILT HI FILT	HI FTLT	7-5147 (HI)	HETCHT (FT)	ANGLE P	I a
OL WEATH RAD	9335.	9415.	190	9415. 190. 640.	20.	.04	73.	-10.Pu	2.3	1.00	6550.	15000	24.9		180.	-
03 TACZABOVE		1150.	110.	260.	*0*	th.	66.	2.00	3.5	2.50	70.	10000	44.0	1.00	0	10
		1090.	1240.	12800.	20°	* U *	57.	2.00	7.	.05	70.	10000.	43.0	1.50	180.	6
	_	1150.	110.	260.	40	4 C •	66.	2.PU	3.5	2.50	70.	10000	110.0	3.10	180.	
		400	12.	120	80.	• U #)	45.	2.A5	0.	.00	70.	1000.	135.0	3.24	180.	3
		136.	•9	60.	80.	20.	* 77	2.A3	0.	.00	70.	50n.	135.0	3.24	180.	10
	_	1150.	110.	260.	40	40.	•99	04.5	3.5	2.50	70.	10000	146.0	3.27	0.0	10
		136.	•9	9	.08	20.	* 77	2.A3	0.	.00	70.	500.	169.0	3.27	0 • 0	5
	~	8800	100001	100001	80.	20.	27.	-20.F2	0.	.00	6560.	10000	190.0	3.27	180.	
	•	4300.1	140000	200000	.009	20.	26.	-20.F9	0.	.00	70.	10000	340.0	3.00	180.	~
		1150.	110.	260.	*0*	4 D •	.99	2.P0	3.5	2.50	70.	10000	377.0	2.52	190.	
		TRANSE	ITTER !	TRANSMITTER HARMONICS	S											
	2		E	ŧ		S		9	7		ec ec	c				
			80.													
		7	120.													
			80.													
	_		130.													
			80.													
			80.													
08 VHF COMMI	•09		80.													
12 TACIBELOW			80.													

Figure V-1. Continued.

								PFCEIVE	RS WITH	2005	ATA							
R.	RECEIVER	LUN FHE	LUM FREG HI FREG	REG	B. (KHZ)	1F MHZ)	SF1	SF2 TM	LEV SP	רבא נ	LOW SRL H	HI SPL LOP	7-PIST	HT (FT)	ANG R	SENS	FAIN (AR)	5/1
	EATH RA	_	J	1415.	1000	30.		600.	.04	.04	6560.	00001	0 110					
02	GL1 SLOPE		529.	335.	80.	51.	100	-09	70.	80.	200	400	9.0	- 4	180.	-101-0	2.0	20.0
	AL ZA L		_	1024.	325.	63.		-04	60.	60.	940.	1150.	0.44			0-00-	2.0	10.0
	TAC 2A H		_	1213.	325	63.		•0•	6n.	.09	1030	1330.	3 44.0	_		0-06- 0	2.0	10.0
	TC XPNU		_	1030.	.0009	.09		.07	.04	70.	.006	1150.	1 43.0	_		0-14-0	c. c.	10.0
	TAC 28 L		_	1024.	325.	63.		• 0 •	.09	•09	.048	1150.	110.0	_		0.06- 0	2.1	10.0
	AC 25 H		_	1213.	325.	63.		•0+	•09	.09	1030.	1330.	3 11n.0	_		0.06- 0	2.0	10.0
	THE COMM			400	40.	30.		100.	100.	A0.	200.	450.	135.0	_		n -97.0	2.0	10.3
	THE COMM			136.	40.	17.		. BO.	100.	100.	100.	156.	3 135.0	_		0-20- 0	2.0	10.0
	AC 1A L		_	1024.	325.	63.		*0*	•09	.09	.048	1150.	3 144.0	_		0.06- 0	2.0	10.0
	AC IA H		_	1213.	325.	63.		•0+	.09	.09	1030.	1330.	3 146.0	_		0.06- 0	2.0	10.0
	100 H			136.	*0*	17.		90.	100.	100.	100.	156.	3 16A.n	_		0-25-0	2.0	10.0
	JOHN RAD	_	•	9800.	800·	Š		•009	0	.08	6560	100001	190.0	_		0 -120.0	-20.n	19.0
	AKK BEA			75.	40 to	5.		•09	.09	20.	70.	80.	3 324.0	_		0-19- 0	-5.0	10.0
	LITMETE	•	-	4300.	400	•		80.	20.	70.	4100.	4500.	3 370.0	_		0-57-0	-20.n	10.0
	AC 18 L		_	1024.	325.	63.		• 0 *	.09	.09	840.	1150.	1 377.0	_		0.06- 0	2.0	10.0
	AC 18 H		_	1213.	325.	63.		• 0 +	.09	.09	1030.	1330 .	3 377.0	_		0-06- 0	2.0	10.0
	YIQ H			#00°	*()*	30.		100.	100.	80.	200	450.	3 439.0	_		0-44-0	2.n	10.0
	HE NAVI			118.	• 0 +	.07		.08	100.	100.	-06	130.	3 4A2.0	_		1-101.0	2.0	20.0
	THE NAVE			116.	410	49.		.0A	100.	100.	•06	130.	3 509.0	_		1-101.0	2.0	20.0

																											ANTENNIAS TON CLOSE		ANTENNIS TOO CLOSE							
		REMARKS	27.							٠,								,	٠							•	ANTE		ANITEN							
HT (FEET)		•	LK							I K									1 X 1							LK			ν 11		(1) (1)					
KNIFF FOGE HEIGHT (FEET) 1-38		RS .	-120.	- 14 -	-06-	-90-	.06-	-96-	-90-	-101-	-06-	-00-	-06-	-50-	.001		-90-		-101-	-90-	- 200		. 0	-06-	-06-	-101-	-64.	-64.	-47.				-101-	-06-	-06-	. nc-
KNIFF	TIVITY	p¹ı >	9.	18.	-36.	-36.		.61		-87.	-66.	- 99-	-42.		-14.				•	-54.	•				8.	30.	-93.	10.		18.	-40.	-48.	θ.	-6-	-3.	7.
S	SFNSI	٠,١١	= -119.	- 1		11			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9						= -54		101.		n :	# 4 		= -18			6- 1			= 1			84-		1	
TrJC14E	IVER	9	. 66	62.				. []		30.			6.0				55.					, ,	1			39			<u>-</u>		.59.		÷	7		74.
TION(PE CE	ı									1	1	1		1 1		1							i		1				1	ι.	1		1	ı .	
LOCAT 36.0	THA	GP.	-20.	14	(V	()	Ň.	N C	પાલા	Ċ	C)	Ň	N	ru c	V C	30	N	•	N I	iu c		VI C	10		W	·V	Cu	2	, ,	i G		·V	ĊJ	CI	A)	r)
KNIFE FOSF LOCATION(TUCHES) 36.0	IBLE INTERFFREIGE (POWER IN GREATER THAM RECEIVER SFNSITIVITY)	67 +	-10.	5. +	*	5.	* •	• •		2. +	5. +	5.	* .				+		• •			• •		5. +		5. +	5. +	5. +	5. +	5. +	÷	+ * 2 ,	5 +	+	•	
Ž.	In	+	+	+	+	+	•			+	+	+	+	•	• •		+	٠		• •		• •	•	+	+		+	•	+	•	+	+	+	+	•	•
RS	POMER	F.	-90-	C	-46	-48.	00 3	0 0	£ 5	-129.	-15.	-73	1.5	17.5		-75.	-73.		0 + 1 =	r 2		- 4	148	Tt.	-48.	0	-152.	÷	-60.	0	-60.	-75.	-75.	941	4 th	<u>-</u>
EIVI		+	•	+	+	•	• • •	•	*	+	*	+	•	• •	• •	+		•	•	•	• •	• •	+	+	+	+	+	+	+	+	•	•	•		+	•
F REC	RELIC	η	73.	• 90	-90	669	99	99	966.	57.	57	57.	57.			57	57.		00	90	-00	66.	99	99	.90	45.	45.	45	7	4 17	* 17 17		* * * * * * * * * * * * * * * * * * * *	949	623	
S V	ER	+	+	+	+	•	•			+	•	+	•	• •	• •		+	•		• •		• •			+		•	•			•	•	+		+	
NUMBER OF RECEIVERS	E Int	5/1	10.	3.0	10	01	07	0 0	10.	20	10	07	-01	9	0 0	0.0	10	Č		0	1		10.	10.	10.	20.	10.	10	10.	10.	10.	20.	56.	16.	10.	13
OF TRANSMITTERS 1	EUUIPMENTS CAUSING POSSIBLE	TER RECEIVER	01 WEATH RAD US DOPL RAD	TACZABOVE UN ATC XPINDR	TAC	TAC	TAC) (A	12 TAC 16 HF	GL1	TAC	TAC	I A C	ر ع کا	1 1	TAC	12 TAC 10 HF		יייייייייייייייייייייייייייייייייייייי	1	1 2	1 4	07 TAC 1A HF	TAC	TAC	6L1		Ę.		V. 1F	J.		TO NITE HAVE	TAC	03 THC 24 HF	A fC
NUMBER	PMEA	SHII	EATH	AC2A						TC >								000	ALCE							3 45			VI# C					AC 1A		
200	EUUI	TRANSMITTER	01 1	03 T						0 + V									00							0 V9			V 89					07 T		

Figure V-1. Continued.

EQUIPMENTS CAUSING POSSIBLE INTERFERCE (POWER IN GREATER THAM RECEIVER SFUSITIVITY)	NO POSSIBLE	INTERF	RELICE	(P)	WER II	4 GREA	TER	THAP' R	FCEI	VFR	SENS	TIVIT	ζ,				
TRANSMITTER HECE	KECE1VER	5/1 +	P d	+	14	+ 6T	٠	79	1	٩		P1	^	٠ ٥٠	•	. PFWARKS	10
07 TACIABOVE US T	TAC 28 LF	10.	66.	+ +	-48	~ ~	5· +			83.	4 1			-90			
12 1	TAC 16 15	10.	99	+ +	1 1 2 3	~ ~	• •	, ii		77.	77			-90-			
08 VHF COMMI 6A U. 13 U. 14 V. 15 U.	DA UHF COMME DE VIHF COMME 13 UHF DIR F 14 VHF NAVI	000000000000000000000000000000000000000	33333		-60 -75 -75			00000		53.	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-55. 17. -52. -40.	•	-97.	N N		
TAC1BELOW US T	¥ .	100	66		n ca								ı	-101			
4 C C C C C C C C C C C C C C C C C C C	ATC XPIOR TAC 26 LF TAC 26 HF TAC 14 LF TAC 14 HF		90000					*******		552 50 50 77				1000			

3	1	2	2	2 4 5	7	EMOLITHEN IS CHOUSING FOUSIBLE INTERFERENCE (FORE) IN GREATER THAT BECEIVER SENSITIVITY)	2	- -	CE TACE	000	MER.	=	SREATER	HAP	2	CEIVE	œ	FISHE	IVITY	_						
THA	NSW1	TRANSMITTER		MECEIVER	VER		+ 1/5	+	PT	+	+ +	+	67 +	64	1	م		I b I	^	2	٥٠ .	•	٠	. Prwarks	WARK	<u>د</u>
07	TACI	07 TACIABUVE	E 0.5	TAC	7.2E	2 . 2 .	10.	+ -	.40		- t 3	+		Λ'		10		-51		2	.00					
			277	140	1 1 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	100	+.+	000	+ + +	2 2 2		* * *		111	77	83. = 77. = 77.	101		1 1	-90.					
80	OB VHF	COMMI		. CHD		MM	10.	+	7 7 7	+	-09-			. ^			• !		•			2	0			
			OE	N N	Š	COMM2	10.	+	* # #	+	0	+	2. +	٠,		7	11 . 17			-						
			13	5	5	IK F	10.	+	* # #	+	-09-	+	2. +	۲,		50				1	7.	11	0			
			74	ŧ.	ž	1/1	20.	+	• 17 17	+	-75.	+	2. +	0		3.3				1	11.					
			15	Ā	Ž	17.5	2n•	+	* 1 1	+	-75.	+	5. +			3.3				-10	17.					
12	TACI	12 TACIBELOW	E 0.3	TAC	C 2A	2A LF	10.	+	.40	+	-48	+	2. +	,		94	11	134		Î	ģ					
			0.3		242	生工	10.	+	090	+	-48.	+	2. +	۲.		66	11	13/4		1	9					
			すつ		×	STACE	10.	+	00	+	0	+	2. +	^		52		28		יין	1					
			50		C 2	~ [5	10.	+	.99	+	-48	+	2. +		2.	50	- 11	-18		1	0					
			95		250	¥ -	10.	+	.99	+	-48.	+	2. +	2		50		-18		1						
			07		77 3	4	10.	+	.90	+	-48.	+	2. +	C		17		77-		10						
			07		7	4	10.	+	eyo.	+	-48.	+	5.4	<i>w</i>		77	77. =	77-		, 5	-06-					

Figure V-1. Continued.

nued.	
Conti	
V-1.	
Figure	

73212102144. = -171101.	-212. + -10. + 2 + 44. = -1711011011039090103901039010390103901039010390103901039010390103901039010390901039090103909010390901039090909090909090	MECEIVER 5/1 + PT + LF + GT + GP - LP =	S/1 +	+ 14	<u>.</u>	+	6T +	GP	٠ -	11	2	~	. SH	:	R	RFWARKS
73. + 2212. + -10. + 2 44. = -171. -101. 73. + 232. + -10. + 2 74. = -132. -90 101. 73. + 133. + -10. + 2 74. = -13390. -90 14390. 73. + 134 10. + 2 74. = -14390. -90 14390. 73. + 134 10. + 2 10. + 2 14390. -90 14490. 73. + 134 10. + 2 10. + 2 10. + 2 14490. -90 14490. 73. + 134 10. + 2 10. + 2 10. + 2 28490. -90 14490. 73. + 134 10. + 2 10. + 2 10. + 2 28490. -90 14490. 73. + 134 10. + 2 10. + 2 101 2 28490. -90 14490. 73. + 134 10. + 2 10. + 2 101 2 28490. -90 14490. 73. + 134 10. + 2 10. + 2 101 2 101 2 101 2 101 2 101 2 101 2 101 2 2 101 2 2 2 2 2 2 2	7321210 2 74. = -171101. 73133100 2 74. = -13290. 73134100 2 74. = -13390. 73134100 2 74. = -13390. 73134100 2 74. = -13390. 73134100 2 74. = -13390. 73134100 2 74. = -13390. 73134100 2 66. = -14390. 73134100 2 66. = -14390. 73134100 2 66. = -14390. 73134100 2 66. = -14390. 73134100 2 66. = -14390. 73134100 2 66. = -14490. 73134100 2 90. = -14490. 73134100 2 90. = -14490. 73134100 2 90. = -14490. 73134100 2 90. = -14490. 73134100 2 90. = -15790. 73134100 2 90. = -15790. 73134100 2 100 2 10190. 73134100 2 100 2 10190. 73134100 2 100 2 10190. 73134100 2 100 2 10190. 73134100 2 100 2 10190. 73134100 2 100 2 10190. 73134100 2 100 2 10190. 73134100 2 2090. = -16790. 73134100 2 2090. = -16790. 73134100 2 2090. = -16790. 73134100 2 2090. = -16790. 73134100 2 2090. = -16790. 73134100 2 2090. = -16790. 73134202090. = -16790. 73134202090. = -16790. 73134202090. = -16790. 73134202090. = -16790. 73134202090. = -16790. 73134202090. = -16790. 731342020202020202020		,											•		
73. +135. +136. +137. +290. LK = 135. 73. +139. +100. + 2.	73. + 133. + 10. + 2. + 74. = 132 90.		+ -07	73. 1	-212.	+	-10. +	2	3 1		-171.		-101-			
73. +199. +10. + 2. + 69. = 193. +90. LK= 193. +90. 73. +133. +10. + 2. + 10. + 2. + 143. +90. 73. +132. +10. + 2. + 10. + 2. + 143. +90. 73. +132. +10. + 2. + 10. + 2. + 144. +90. 73. +132. +10. + 2. + 10. + 2. + 144. +90. 73. +132. +10. + 2. + 10. + 2. + 10. + 2. 73. +133. +10. + 2. + 10. + 2. + 10. + 2. 73. +133. +10. + 2. + 10. + 2. + 10. 73. +133. +10. + 2. + 10. + 2. + 10. 73. +133. +10. + 2. + 10. + 2. + 10. 73. +133. +10. + 2. + 10. + 2. + 10. 73. +133. +10. + 2. + 2. + 10. + 2. + 10. 73. +133. +10. + 2. + 2. + 2. + 2. + 2. 73. +133. +10. + 2. + 2. + 2. + 2. 73. +133. +10. + 2. + 2. + 2. + 2. 73. +133. +10. + 2. + 2. + 2. + 2. 73. +133. +10. + 2. + 2. + 2. + 2. 73. +133. +10. + 2. + 2. + 2. + 2. 73. +133. +10. + 2. + 2. + 2. + 2. 73. +133. +10. + 2. + 2. + 2. + 2. 73. +133. +10. + 2. + 2. + 2. + 2. 73. +133. +10. + 2. + 2. + 2. + 2. 73. +133. +10. + 2. + 2. + 2. + 2. 73. +133. +10. + 2. + 2. + 2. + 2. 73. +133. +10. + 2. + 2. + 2. + 2. 74. +133.	73. 139. 10. 2. 67. = 193. -99. -99. -143. -99. -99. -143. -99. -99. -143. -99. -97. -145. -99. -143. -99. -97. -145. -99. -97. -145. -99. -143. -99. -97. -145. -99. -97. -145. -99. -97. -145. -99. -97. -145. -99. -97. -145. -99. -147. -99. -147. -99. -147. -99. -147. -99. -147. -99. -147. -99. -177. -99. -177. -99. -177. -99. -177. -99. -177. -99. -177. -99. -177. -99. -177. -99. -177. -99. -177. -99. -177. -99. -177. -99. -177. -101. -177. -101. -177. -101. -101. -101. -101. -101. -101. -101.		10.	7 1	1134		1011	• •	1 1	L	132.		-06-	: ئ		• •
13	73. + 133. + -10. + 2. + 45. = 14390.		10. +	73. +	-199	+	-10. +	, ,	- 9	111	-193		174	, <u>, , , , , , , , , , , , , , , , , , </u>		
73. + 134. + 10. + 2.	73. + 114. + -110. + 2 85. = 14390.	_	+ .01	73. +	-133.	+	-10. +	2	- 85	11	-143.		-06-	ڐ		5.
73. + -312. + -10. + 2.	73. + -312. + -10. + 2	_	+ • 01	73. +	-134.	+	-10. +	c	- 85	П	-143.		-06-	۲		5.
73. + 520. + -10. + 2 40. = -332.	73. + -320. + -10. + 2. + d8. = -332.	_	+ 0	73.	-315-	+	-10. +	2	<u>-</u> β6	11	-325.		-64-	۲		.9
73	73. + -133. + -10. + 2. + 90. = -144 90. Lv= 173. + -133. + -10. + 2. + 90. = -144 90. Lv= 173. + -134. + -10. + 2. + 92. = -336 90. Lv= 173. + -253. + -10. + -20. + 99. = -157 90. Lv= 173. + -134. + -10. + 2. + 99. = -157 90. Lv= 173. + -137. + -10. + 2. + 99. = -157 90. Lv= 173. + -137. + -10. + 2. + 103. = -157101. Lv= 173. + -137. + -10. + 2. + 103. = -157101. Lv= 173. + -137. + -10. + 2. + 103. = -157101. Lv= 173. + -137. + -10. + 2. + 2. + 2. + 2. + 2. + 2. + 2. +		+ • 0	73.	-320	+	+ 101-	2	- 98	11	-332.		-64.	Ľ		.9
73. + 154. + -10. + 2. + 99. = -149.	75. + 134. + 10. + 2. + 90. = 144 90. Lv= 134. + 134. + 10. + 25. + 10. + 25. + 10. + 25. + 10. + 25. + 10. + 25. + 10. + 25. + 10. + 25. + 10. + 25. + 26. + 26. + 25. + 20. + 20. + 20. Lv= 133. + 10. + 20. + 20. + 20. + 20. + 20. + 20. Lv= 134. + 20. + 20. + 20. + 20. + 20. + 20. Lv= 134. + 20. + 20. + 20. + 20. + 20. Lv= 134. + 20. + 20. + 20. + 20. + 20. Lv= 137. + 20. + 20. + 20. + 20. + 20. + 20. + 20. Lv= 137. + 20. + 20. + 20. + 20. + 20. + 20. Lv= 137. + 20. +	4 .	+ • 0	73.	-133.	+	-10. +	٠.	- 6	11	-148.		-06-	ڙ		8.
73. + 2520. + -10. + -5. + 99. = -25A 697.	73	-	+ • •	7.3	-134	+ -	-10.	2	-	11	-140		-06-	Ľ.		
73. + -1673. + -170. + -70. + 948. = -288261.	73. + -253. + -10. + -7. + 98. = -28251.	4 .		1.5	-350	+	+ 101-	~ 1	26	11	336.		-64	۲		
73. + 1312. + -10. + -20 99. = -228.	73. + 182. + -10. + -20. + 99. = -228. + 73.	01	+	5	-255.	+	+ 101-	· ·	86	11	-282·		-61.	۲.		
73. + 133. + -10. + 2 99. = -157.	73. + -133. + -10. + 2. + 99. = -157.		+	13.	-182.	+	-10.	-50.	-	11	-22A.		-73.	ڏ		
73. + 134. + -10. + 2 103. = -15890. LK= + 133. + -134. + -101. LK= + 133. + -137. + -101. LK= + 103. = -355101. LK= + 103. + -357. + -101. LK= + 103. = -355101. LK= + 103. + -103. + -103. + -101. LK= + 103. + -103. + -103. + -101. LK= + 103. + -103. +	73. + -134. + -10. + ? - 193. = -158 990. LK= + 133. + -137. + -101. LK= + 133. + -101. LK= + 133. + -101. LK= + 101. LK= + 103. = -355 101. LK= + 101. LK= + 103. = -355 101. LK= + 103. = -375 101. LK= + 103. = -375 101. LK= + 103. EK= + 103. E	0.7	•	73.	-155.	+	-10.+		66	11	-157.		-06-	۲		å
73 + 5312 + -10 + 2 - 1011 = -334	73 * 5312 * * -10 * 2 * - 101 = -334	0.4	+		-134	+	-10.	2.	5	н	-15A.		-06-	Ľ		8
73. + -337. + -10. + 2 102. = -355 101.	73.	10	+	73.	-312.	+	-10. +	ç	- 101	11	-33A.		-44.	Ľ		
+ 73 + -377 + -10 + 2 - 103 = -355101	+ 73 + -377 + -10 + 2 - 103 = -355 - 101	50	+	73. 4	-337.	+	-10. +	2.	- 102	11	-355.		-101-	Ľ		.6
66. + -252. + 2. + -10 55. = -240.	66. + -252. + 2. + -10 55. = -240.	50	+	73. +	-337.	+	-10. +	5.	- 103	11	-355.		-101-	Ţ		.6
66. + 143. + 2. + 2 50. = -103.	66. + -143. + 2. + 2 60. = -103.	10.	+	+ •99	-252.	+	2. +	-10.	- 55	11	-24u			ر اا		0.
66 + -175 + 2 + 2 + 2 + 68 = -16397 -	66. + -175. + 2. + 2 68. = -1639797979797979797	20.	+	+ + + 99	-143.	+	5. +	5.	- 5	П	-103.		-101-	LK		7.
+ 66. + -181. + 2. + 2 68. = -170.	+ 066 + 181 + 2 + 2 + 2 + 68 = 170 - 97 + 66 + 251 + 2 + 2 + 68 = 170 - 97 + 66 + 251 + 2 + 2 + 2 + 43 = 144 - 97 + 66 + 251 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	10.	+	+ + + +	-175.	+	5. +	5	- 68	84	-163.		-67.			
b6 + -181 + + 2 + 2 + 43 = -14497 + 66 + -182 + 183 + 184197 + 66 + -182 + 183 + 184 + -20 + 66 + -182 + 183 + 184 + -20 + 66 + -183 + 184 + -20 + 66 + -183 + 184 + -20 + 66 + -183 + 184 + -184 + -184 + -197 + -	+ 66 + -181 + + 2 + 2 + 43 = -144	10.	+	+ + + 40	-181.	+	5. +	5	90 -	н	-170.		-44			
66. + -253. + 2. + -20 81. = -276 120. H = 2	66. + -253. + 2. + -20 81. = -276120. H = 2 66. + -175. + 2. + -20 87 177	10	+	+ .90	-181-	+	+ 5 +	5	#	П	-144.		-64.			
66. + -182. + 2. + -5 67. = -177616166. + -173. + -566. + -173. + -566. + -173. + -566. + -173. + -56666676667676767	66. + -182. + 2. + -5 67. = -17761. + 66. + -182. + 2. + -5 67. = -17761. + 66. + -173. + 3. + 66. + -173. + 2. + -20 65. = -200 97. + 101. + 66. + -173. + 2. + 2. + 2. + 2. + 2. + 2. + 2. +	0.1	+	• • • •	-253.	+	5. +	-50.	- B	11	-276.			п		
+ 66. + -173. + 2. + -70 65. = -20073. H = 3 + 66. + -175. + 2. + 2 54. = -16097. + 3 + 66. + -182. + 2. + 2 54. = -146101. + 66. + -182. + 2. + 2 55. = -146101. + 57. + -221. + 2. + -10 50. = -21397. + 57. + -139. + 2. + 2 41. = -10397. + 57. + -139. + 2. + 20 51. = -224120. H = 2 + 57. + -141. + 2. + -5 50. = -12761. + 57. + -141. + 2. + -5 50. = -12761. + 57. + -140. + 2. + 20 51. = -22412761. + 57. + -140. + 2. + 20 51. = -127101. + 57. + -140. + 2. + 20 51. = -127101.	+ 66 + -173 + 2 + -20	10	+	+ + + 99	-182.	+	5° +	-5-	- 67	11	-177.		-61.			
+ 65 + -175 + 2 + 2 - 65 = -160 + -97 + 65 + -175 + 2 - 2 - 64 = -160 + -101 + 65 + -182 + 2 - 2 - 54 = -146 + -101 + 65 + -182 + 2 - 2 - 55 = -146 + -101 + 65 + -182 + 2 - 101 + 65 + -183 +	+ 666 + -175 + 2 - 2 - 65 = -160979796 + -182 - 2 - 5914610197182 - 2 - 5914610197182 - 2 - 50146101971011021011021021011021011021	10	+	+ • 99	-173.	+	5. +	-50.	- 85	П	-200-					
+ 66. + -182. + 2. + 2 54. = -146101. + 57. + -221. + 2. + -10 50. = -213104. H = 2 LK= + 57. + -134. + 2. + 2. + 10 50. = -21397. + 57. + -134. + 2. + 2. + 41. = -103. + 57. + -139. + 2. + 2. + 41. = -103. + 57. + -139. + 2. + 20 51. = -224. + 57. + -141. + 2. + -20 51. = -224. + 57. + -141. + 2. + -20 51. = -127. + 57. + -141. + 2. + -20 51. = -127. + 57. + -140. + 2. + 2 67. = -121. - 101.	+ 65. + -182. + 2. + 2 54. = -146.	10	+	+ • 49	-175.	+	5. +	2.	- 6	11	-160					
+ 05. + -182. + 2. + 2 55. = -146101. + 57. + -221. + 2. + -10 50. = -213104. H = 2 LK= + 57. + -134. + 2. + 2 41. = -10397. + 57. + -139. + 2. + 2 41. = -10397. + 57. + -139. + 2. + 2 70 51. = -224120. H = 2 + 57. + -214. + 2. + -50 51. = -224120. H = 2 + 57. + -141. + 2. + -50 51. = -12761. + 57. + -140. + 2. + 20 51. = -127101. + 57. + -140. + 2. + 2 50. = -121101.	+ 05. + -182. + 2. + 2 55. = -146101. + 57. + -221. + 2. + -10 50. = -213104. H = 2 LK= 57. + -134. + 2. + 2 41. = -10397. 57. + -139. + 2. + 2 41. = -10397. 57. + -139. + 2. + 2 72. = -14197. 57. + -141. + 2. + -5 50. = -12761. 57. + -214. + 2. + -5 50. = -12761. 57. + -141. + 2. + 2. + 20 51. = -120. 57. + -140. + 2. + 2 50. = -121101. 57. + -140. + 2. + 2 50. = -121101. 66. + -252. + 2. + -10 56. = -250104. H = 2 LK=	20	+	+ .49	-182.	+	5. +	2.	- 54	11	-146.		-101-			
+ 57. + -221. + 2. + -10 50. = -213.	+ 57. + -221. + 2. + -10 50. = -213.	50		+ •40	-182.	+	5. +	° ~	- 55	11	-146.		-101-			
+ 57. + -134. + 2. + 2 41. = -10397. + 57. + -139. + 2. + 2 41. = -10997. + 57. + -139. + 2. + 20 51. = -224120. H = 2. + 57. + -141. + 2. + -50. = 51. = -224120. H = 2. + 57. + -141. + 2. + -50. = -12761. + 57. + -140. + 2. + 20 51. = -120101. + 57. + -140. + 2. + 2 67. = -121101.	57. + -134. + 2. + 2 41. = -10397. 57. + -139. + 2 41. = -10397. 57. + -139. + 2 2 41. = -10397. 57. + -139. + 2 2 72. = -14197. + 222. + 2. + 20 51. = -224120. H = 2. 57. + -141. + 2. + 57. + -141. + 2. + 57. + -141. + 2. + 57. + -141. + 2. + 57. + -140. + 2. + 57. + -140. + 2. + 2. + 57. + -140. + 2. + 2. + 57. + -140. + 2. + 2. + 57. + -121101. + 2. + 2. + 29. = -121101. + 2. + 20. = -121101.	1.0	+	57. +	-221.	+	2. +	-10	- 50	11	-213.			1 2 LK	L)	5.
57. + -139. + 2. + 2 41. = -10997. 57. + -139. + 2. + 20 51. = -24120. H = -57. + -224120. H = -57. + -57. + -120. H = -57. + -120. H = -57. + -140. + 2. + -50. = -12757. + -140. + 2. + -20 57. = -12757. H = -57. + -140. + -20. + -20 57. = -120101.	57. + -139. + 2. + 2 41. = -10997. 57. + -139. + 2. + 2 72. = -14197. 57. + -139. + 2. + 2 50. = -124120. H = 2. + 57. + -141. + 2. + 50. = -12751. = -224120. H = 2. + 57. + -141. + 2. + 50. = -12751. = -12751. + 3. + 3. + 57. + -140. + 2. + 2. + 2 50. = -12010110157. + -140. + 2. + 2. + 50. = -121101101. + 2. + 2. + 20. = -121101101. + 2. + 2. + 20. = -121101101. + 2. + 20. = -121101101.	1.0	+	57.	-134.	+	2. +	(1)		11	-103.		-97.			
+ 57. + -139. + 2. + 2 72. = -14197. + 57. + -222. + 2. + -20 51. = -224120. H = -61. + 57. + -141. + 2. + -50 01. = -22673. H = -73. + 57. + -134. + 2. + 2 53. = -1297. + 57. + -140. + 2. + 2 60. = -121101.	+ 57 + -139 + 2 + 2 - 2 - 72 = -14197 + -120 + 1 = 2 + 57 + -120 + 1 = 2 + 57 + -120 + 1 = 2 + 57 + -120 + 1 = 2 + 57 + -120 + 1 = 2 + 57 + -120 + 1 = 2 + 57 + -120 + 1 = 2 + 57 + -120 + 1 = 3 + 57 + -130 + 1 = 3 + 57 + -140 + 2 + 2 + 2 + 57 + -140 + 2 + 2 + 2 + 57 + -140 + 1 = 2 + 57 + -140 + 1 = 2 + 57 + -140 + 1 = 2 + 57 + -140 + 1 = 2 + 57 + -140 + 1 = 2 + 57 + -150 + 101 +	0.0	+	57. +	-139.	+	5. +	(/1	-	H	-100-		-47.			
+ 57 + -222 + 2 + -20 - 51 5 -224120 H = -120 H = -120 H = -121 + 57 + -141 + 2 + -5 - 51 5 -22412761 + -121 + -140 H = -120 H	+ 57. + -222. + 2. + -20 51. = -224120. H = 2 + 57. + -141. + 2. + -5 50. = -12761. - 57. + -134. + 2. + -20 53. = -11497. + 57. + -140. + 2. + 2 53. = -114101. + 57. + -140. + 2. + 2 62. = -121101. + 66. + -252. + 2. + -10 66. = -250104. H = 2 LK=	10	+	57. +	-139.	+	2. +	2.	- 72	H	-141.		-67.			
+ 57. + -141. + 2. + -5 50. = -12761. + 57. + -214. + 2. + -20 01. = -22673. H = .73. H = .75. + .134. + .2. + 57. + .140. + .2. + .2. + .2 62. = -121101.	+ 57. + -141. + 2. + -5 50. = -12761. + 57. + -214. + 2. + -20 01. = -22673. H = 3. + 57. + -134. + 2. + 20 51. = -121101. + 57. + -140. + 2. + 2 61. = -120101. + 06. + -252. + 2. + -10 56. = -250104. H = 2 LK= + 66. + -175. + 2. + 20 29. = -12497.	10	+	57. +	-222.	+	2. +	-50-	- 51	11	-224.			П		
+ 57. + -214. + 2. + -20 51. = -22673. H = -73. H = 57. + -134. + 2. + 2 53. = -11697. + 57. + -140. + 2. + 2 67. = -121101.	57. + -214. + 2. + -20 01. = -226 73. H = 3 57. + -134. + 2. + 2 53. = -11697. 57. + -140. + 2. + 2 67. = -121101. 57. + -140. + 2. + 2 65. = -121101. 66. + -252. + 2. + 10 66. = -250104. H = 2 LK=	10	+	57.	-141.	+	2. +	-5-	,	11	-127.		-61.			
+ 57. + -134. + 2. + 2 53. = -11697. + 57. + -140. + 2. + 2. + 5 61. = -120. + 57. + -140. + 2. + 2 62. = -121101.	+ 57. + -134. + 2. + 2 53. = -11697. + 57. + -140. + 2. + 2 61. = -120101. + 57. + -140. + 2. + 2 62. = -121101. + 66. + -252. + 2. + -10 66. = -250104. H = 2 LK= + 66. + -175. + 2. + 29. = -12497.	1.0	+	57. +	-214.	+	2. +	-20-		14	-226.			11		
+ 57. + -140. + .2. + 2 61. = -120. + 57. + -140. + 2. + 2 62. = -121.	+ 57. + -140. + ·2. + 2 61. = -120101. + 57. + -140. + 2. + 2 62. = -121101. + 66. + -252. + 2. + -10 66. = -250104. H = 2 LK= + 66. + -175. + 2. + 2 29. = -12497.	10	+	57. +	-134.	+	÷ . ~	2.		11	-114.					
+ 57. + -140. + 2. + 2 62. = -121.	+ 57. + -140. + 2. + 2 62. = -121101. + 06. + -252. + 2. + -10 66. = -250104. H = 2 LK= + 66. + -175. + 2. + 2 29. = -12457.	5.0	+	57. +	-140.	+	. 2	C	1	11	-120.		-101-			
	+ 06. + -252. + 2. + -10 66. = -250104. H = 2 LK= + 66. + -175. + 2. + 2 29. = -12497.	5	+	57.	-140.	+	2. +	2.		11	-121.		-101-			
		-	+			•	5.		- 29	F	-124					•

CULLED EQUIPMENTS (PortR 14 IS LESS THAN RECEIVER SENSITIVITY)

Figure V-1. Continued.

ç			
. RFWARKS		1. 6	15.
•		רָלָ	LK LA
•	N F		21
	n n '		1
•			
\$ \$	-27. -120. -61. -73. -101.	101. 101. 101. 101. 101. 101. 101. 101.	-104. -101. -97.
~			
PI	-131. -240. -240. -157. -174. -160.	1392 1392 11697 11	-255. -113. -179.
11			0.00
٦	600 600 600 600	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	71.
1	1111111		1.1.1
65			-10. 2. 2.
+			+ + +
61	*******	Christian Christ	c 1011
+			
4	-181. -253. -162. -173. -175. -182.	1.05.	-252. -143. -175.
*			: : :
7	665. 665. 665.		66.
+			
5/1	10. 10. 10. 10. 20.		10. 20. 10.
	VHF CURMZ VHF COMI DOPL RAD MARK BEAC ALTIMETER UHF DIR F VHF MAVI	#EATH RAU TAC 2A LF TAC 2B LF TAC 2B LF TAC 2B LF TAC 1A HF TAC 1A HF TAC 1A HF TAC 1A HF TAC 1B HF VHF TAV1 VHF TAV1 VHF TAV1 VHF TAV1 VHF TAV1 VHF TAV2 TAC 2B HF TAC 1B HF TA	ALATH HAU GLI SLOPE UNF CUM
1 VE F	VHF OUPL MARK MARK ALTIN UHF U	TATE OF THE CONTROL O	6C1 S
HECE 1 VER	22011111	HAPPECHARDS CCHAPPECCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	4 2 2
THANSMITTER	05 TAC28ELU#	C C C C C C C C C C C C C C C C C C C	07 TACIABU.E
ISMI	AC2		AC1
TKAN	1 50	68 VIII	1 70
_	_	•	<u> </u>

0
a
\supset
nued,
-
Cont
_
2
\circ
~
>
a
2
\supset
gure
ш

	CULL	CULLED EQUIPMENTS (POW-R IN 15 LESS THAN RECEIVER SENSITIVITY)	TS (PC	Dia R	=	15 L	ESS T	HAN	RFC	EIVF	B SE	NSTT	1717	2									
TRANSMITTER		HECE I VER	5/1	+	РТ	+	7	+	61	•	9	ı	٦	П	PT	~	5	•			DE	PFWARKS	
07 TACIABOVE	000 000 111 111 111 111	VIF CUMMZ VIF COMMI DOPL RAU MARK BEAC ALTIMETER VIF DIR F	000000000000000000000000000000000000000	* * * * * * *	900000000000000000000000000000000000000	* * * * * * *	-181. -253. -182. -173.		*******		2000	111111	84. 28. 103. 80.	0.0000000000000000000000000000000000000	-185. -129. -297. -189.		-97. -120. -61.	I I	N F				
OB VHF CUMMI	15 10 10 10 10 10 10 10 10 10 10 10 10 10		200.000.000.000.000.000.000.000.000.000				-182. -150. -150. -154. -184. -150.						53. 3.3. 5.7. 5.7. 5.7.	n = n + n + n + n + n + n	-1226. -123. -127. -172. -144.		101-101-101-101-101-101-101-101-101-101	IIIIIII	11 11 11 11 11 11 11 11 11 11 11 11 11	7,7		12.	
	1000	TAC 1A HF DOPL RAD MARK BEAC ALTIMETER TAC 18 LF	000000		3 3 3 3 3 3		-154. -228. -106. -224. -150.				25.50		53.	$\Pi_{-}\Pi_{-}\Pi_{-}\Pi_{-}\Pi_{-}\Pi_{-}\Pi_{-}\Pi_{-}$	-112. -244. -97. -239. -143.		-90. -120. -61. -90.						
09 DOPL RAL	U PERFECT AND POUR CCCC	MLATH KAU GGLI SLUPE TAG 2A LF TAG 2A LF TAG 2B LF TAG 2B LF TAG 2B LF TAG 2B LF TAG 1A LF TAG 1A LF TAG 1A LF TAG 1B LF		• • • • • • • • • • • • • • • • • • •	CAGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		1146. 1146. 1146. 1146. 1387. 1387. 1387. 1198. 1198. 1198.	******					1112 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		1153. 1274. 1284. 1284. 1386. 1376. 1376. 1376. 1376.		-101 -200 -200 -200 -200 -200 -200 -200			רר הוה		13.	
11 ALTIMETER UI	10	#LATH FAD	10.	+	2.	+	-151.	•	-21.	٠	-10.	ı	97.	11	-242.		-104	x	11	الج الج		28.	

2 LK= □□< 11 I 11001 -101. ~ 2007. 2017. 2017. 2017. 2017. 2017. 2017. 2017. 2017. 2017. 2017. 11150 11147 11147 11157 11147 Б 11 CULLED EQUIPMENTS (POR: R IN 15 LESS THAN RECEIVER SENSITIVITY) 4 63 61 1163. 1143. 1143. 1143. 1163. 1163. 1163. 1163. 1163. 1163. 1163. Ы 10. 10. 10. 10. 10. 10. 10. 661 SLOPE 1746 28 LF 476 28 LF 1746 28 LF 1746 28 LF 1746 18 LF TRANSMITTER MECEIVER 11 ALTIMETER 12 TACIBELOW

Figure V-1. Continued.

Figure V-1. Continued.

REFERENCES

- 1. Inter-Agency Agreement, DOT-FA70WAI-175, Task Assignment No. 2.
- 2. Jasik, H., ed., Antenna Engineering Handbook, Mc Graw-Hill, New York, 1961.
- 3. Kraus, J.D., Antennas, McGraw-Hill, New York, 1950.
- 4. Hasserjian, G., and Ishimaru, A., "Excitation of a Conducting Cylindrical Surface of Large Radius of Curvature", *IRE Transactions on Antennas and Propagation*, VOL AP-10, May, 1962.
- 5 Khan, P.J., et al., "Derivation of Aerospace Antenna Coupling Factor," *Interference Prediction Techniques*, Cooley Electronics Laboratory, University of Michigan, 1964.
- 6. Herd, A., An Automated Antenna Coupling Loss Calculation Technique for a Cylindrical Body, ESD-TR-70-209, ECAC, 1970.
- 7. Cleaver, R., and Bode, T., An Algorithm for Calculating Transmitter Receiver Frequency Rejection Loss, ESD-TR-70-128, ECAC, 1970.
- 8. Mason, S., and Zimmerman, H., *Electronic Circuits, Signals and Systems*, John Wiley and Sons, New York, 1960.
- 9. Klauder, J.R., et al., "The Theory and Design of Chirp Radars," *The Bell System Technical Journal*, July, 1960.
- 10. O'Brian, P., and Busch, A., *Effects of Selective Signal Parameters on Communications Intelligibility*, FAA Report NA-69-21, Federal Aviation Agency, Atlantic City, 1969.
- FAA Frequency Management Engineering Principles, Geographic Separation Criteria for VOR, DME, TACAN, ILS and VOT Frequency Assignments, Federal Aviation Agency, Washington, D. C., 1965.
- 12. Himmelheber, P., *Investigation of TACAN/IFF Compatibility*, Problem No. 67-18, Naval Electronics Systems Command, Patuxent River, Md. 1967.
- 13. Shaw, K., et al., *TACAN/DME Interference to the Air Traffic Control Radar Beacon System*, ESD-TR-70-292, ECAC, 1970.

Security Classification

DOCUMENT CONTROL DATA - R & D								
(Security classification of title, body of ebstrect end indexing annotation must be e RIGINATING ACTIVITY (Corporate euthor)		20. REPORT SE	CURITY CLASSIFICATION					
		UNCLA	ASSIFIED					
Electromagnetic Compatibility Analysis Center		2b. GROUP						
EPORT TITLE		<u> </u>						
AVIONICS INTERFERENCE PREDICTION	MODEL							
DESCRIPTIVE NOTES (Type of report end inclusive detes) Technical Report								
UTHOR(S) (First name, middle initiel, lest neme)								
Morgan, G.								
November 1970	76. TOTAL NO. OF	F PAGES	7b. ND. OF REFS					
CONTRACT OR GRANT NO.	96. ORIGINATOR'S	REPORT NUMB	ER(S)					
F-19628-70-C-0291	ESD-TR-7	ESD-TR-70-286						
649E								
	9b. OTHER REPORT NO(\$) (Any other numbers thet mey be essigned this report)							
DISTRIBUTION STATEMENT								
Distribution of this document is unlimited.								
SUPPLEMENTARY NOTES	12. SPONSORING M	ALITARY ACTIV	/ITY					
ŝ	Department of Defense							

An interference prediction model developed for use in evaluating expected interactions between avionics equipments on an airplane is described. The model is substantially automated and includes subroutines which calculate expected path losses between aircraft antennas and the rejection offered by the receivers to the undesired emissions from transmitters on the aircraft.

An analysis of the interactions between the equipments installed on an FAA Sabreliner has been made using the prediction model and the results of the analysis are described.

Requirements for expansion of the prediction model are established.

ABSTRACT

UNCLASSIFIED

4.	Security Classification KEY WORDS		LINK A		LINK		LINK C	
	KEY WORDS	ROLE	WT	ROLE	wт	ROLE	٧	
		1						
	1							
	* ** *** *** *** *** *** *** *** *** *							
		-						
	•							
			1.00					
	•							